
Mastodon.py Documentation
Release 1.8.1

Lorenz Diener

Feb 11, 2024

INTRODUCTION

1 Usage 1

2 Introduction 3

3 Acknowledgements 5

4 Research use and citing 7
4.1 General information . 7
4.2 Return values . 10
4.3 Error handling . 24
4.4 App registration, authentication and preferences . 25
4.5 Statuses, media and polls . 28
4.6 Accounts, relationships and lists . 35
4.7 Reading data: Timelines . 42
4.8 Instance-wide data and search . 43
4.9 Notifications and filtering . 47
4.10 Streaming . 51
4.11 Misc: Markers, reports . 54
4.12 Utility: Pagination and Blurhash . 55
4.13 Administration and moderation . 56
4.14 Contributing . 63
4.15 Every function on a huge CTRL-F-able page . 64

Python Module Index 95

Index 97

i

ii

CHAPTER

ONE

USAGE

Register your app! This only needs to be done once (per server, or when distributing rather than hosting an application,
most likely per device and server). Uncomment the code and substitute in your information:

from mastodon import Mastodon

'''
Mastodon.create_app(

'pytooterapp',
api_base_url = 'https://mastodon.social',
to_file = 'pytooter_clientcred.secret'

)
'''

Then, log in. This can be done every time your application starts (e.g. when writing a simple bot), or you can use the
persisted information:

from mastodon import Mastodon

mastodon = Mastodon(client_id = 'pytooter_clientcred.secret',)
mastodon.log_in(

'my_login_email@example.com',
'incrediblygoodpassword',
to_file = 'pytooter_usercred.secret'

)

Note that this won’t work when using 2FA - you’ll have to use OAuth, in that case. To post, create an actual API
instance:

from mastodon import Mastodon

mastodon = Mastodon(access_token = 'pytooter_usercred.secret')
mastodon.toot('Tooting from Python using #mastodonpy !')

1

Mastodon.py Documentation, Release 1.8.1

2 Chapter 1. Usage

CHAPTER

TWO

INTRODUCTION

Mastodon is an ActivityPub-based Twitter-like federated social network node. It has an API that allows you to interact
with its every aspect. This is a simple Python wrapper for that API, provided as a single Python module.

Mastodon.py aims to implement the complete public Mastodon API. As of this time, it is feature complete for Mastodon
version 3.5.5. The Mastodon compatible API layers of various other pieces of software as well as forks, while not an
official target, should also be basically compatible, and Mastodon.py does make some allowances for behaviour that
isn’t strictly like that of Mastodon, and attempts to support extensions to the API.

Some usage examples (not neccesarily following app development best practices, but enough to get you started if you
learn best by example) can be found at https://github.com/halcy/MastodonpyExamples

3

https://github.com/mastodon/mastodon
https://github.com/halcy/MastodonpyExamples

Mastodon.py Documentation, Release 1.8.1

4 Chapter 2. Introduction

CHAPTER

THREE

ACKNOWLEDGEMENTS

Mastodon.py contains work by a large number of contributors, many of which have put significant work into making it
a better library. You can find some information about who helped with which particular feature or fix in the changelog.

5

Mastodon.py Documentation, Release 1.8.1

6 Chapter 3. Acknowledgements

CHAPTER

FOUR

RESEARCH USE AND CITING

If you use Mastodon.py in your research, please cite it according to the latest CITATION.cff from the repository:

https://github.com/halcy/Mastodon.py/blob/master/CITATION.cff

As a personal request, It is important to me to ask you to make sure that the subjects of your research - fediverse users -
are alright with the research you are doing on them and/or that you have secured the approval of your institutions ethics
board.

4.1 General information

4.1.1 Rate limiting

Mastodon’s API rate limits per user account. By default, the limit is 300 requests per 5 minute time slot. This can differ
from instance to instance and is subject to change. Mastodon.py has three modes for dealing with rate limiting that you
can pass to the constructor, “throw”, “wait” and “pace”, “wait” being the default.

In “throw” mode, Mastodon.py makes no attempt to stick to rate limits. When a request hits the rate limit, it simply
throws a MastodonRateLimitError. This is for applications that need to handle all rate limiting themselves (i.e. inter-
active apps), or applications wanting to use Mastodon.py in a multi-threaded context (“wait” and “pace” modes are not
thread safe).

Note: Rate limit information is available on the Mastodon object for applications that implement their own rate limit
handling.

Mastodon.ratelimit_remaining

Number of requests allowed until the next reset.

Mastodon.ratelimit_reset

Time at which the rate limit will next be reset, as a POSIX timestamp.

Mastodon.ratelimit_limit

Total number of requests allowed between resets. Typically 300.

Mastodon.ratelimit_lastcall

Time at which these values have last been seen and updated, as a POSIX timestamp.

In “wait” mode, once a request hits the rate limit, Mastodon.py will wait until the rate limit resets and then try again,
until the request succeeds or an error is encountered. This mode is for applications that would rather just not worry
about rate limits much, don’t poll the API all that often, and are okay with a call sometimes just taking a while.

7

https://github.com/halcy/Mastodon.py/blob/master/CITATION.cff

Mastodon.py Documentation, Release 1.8.1

In “pace” mode, Mastodon.py will delay each new request after the first one such that, if requests were to continue at
the same rate, only a certain fraction (set in the constructor as ratelimit_pacefactor) of the rate limit will be used up.
The fraction can be (and by default, is) greater than one. If the rate limit is hit, “pace” behaves like “wait”. This mode
is probably the most advanced one and allows you to just poll in a loop without ever sleeping at all yourself. It is for
applications that would rather just pretend there is no such thing as a rate limit and are fine with sometimes not being
very interactive.

In addition to the per-user limit, there is a per-IP limit of 7500 requests per 5 minute time slot, and tighter limits on
logins. Mastodon.py does not make any effort to respect these.

If your application requires many hits to endpoints that are available without logging in, do consider using Mastodon.py
without authenticating to get the full per-IP limit.

4.1.2 Pagination

Many of Mastodon’s API endpoints are paginated. What this means is that if you request data from them, you might
not get all the data at once - instead, you might only get the first few results.

All endpoints that are paginated have four parameters: since_id, max_id, min_id and limit. since_id allows you to
specify the smallest id you want in the returned data, but you will still always get the newest data, so if there are too
many statuses between the newest one and since_id, some will not be returned. min_id, on the other hand, gives you
statuses with that minimum id and newer, starting at the given id. max_id, similarly, allows you to specify the largest id
you want. By specifying either min_id or max_id (generally, only one, not both, though specifying both is supported
starting with Mastodon version 3.3.0) of them you can go through pages forwards and backwards.

On Mastodon mainline, you can, pass datetime objects as IDs when fetching posts, since the IDs used are Snowflake
IDs and dates can be approximately converted to those. This is guaranteed to work on mainline Mastodon servers
and very likely to work on all forks, but will not work on other servers implementing the API, like Pleroma, Misskey
or Gotosocial. You should not use this if you want your application to be universally compatible. It’s also relatively
coarse-grained.

limit allows you to specify how many results you would like returned. Note that an instance may choose to return less
results than you requested - by default, Mastodon will return no more than 40 statuses and no more than 80 accounts
no matter how high you set the limit.

The responses returned by paginated endpoints contain a “link” header that specifies which parameters to use to get the
next and previous pages. Mastodon.py parses these and stores them (if present) in the first (for the previous page) and
last (for the next page) item of the returned list as _pagination_prev and _pagination_next. They are accessible only
via attribute-style access. Note that this means that if you want to persist pagination info with your data, you’ll have to
take care of that manually (or persist objects, not just dicts).

There are convenience functions available for fetching the previous and next page of a paginated request as well as for
fetching all pages starting from a first page. For details, see fetch_next(), fetch_previous(). and fetch_remaining().

4.1.3 IDs and unpacking

Mastodon’s API uses IDs in several places: User IDs, Toot IDs, . . .

While debugging, it might be tempting to copy-paste IDs from the web interface into your code. This will not work, as
the IDs on the web interface and in the URLs are not the same as the IDs used internally in the API, so don’t do that.

8 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

ID unpacking

Wherever Mastodon.py expects an ID as a parameter, you can also pass a dict that contains an id - this means that, for
example, instead of writing

mastodon.status_post("@somebody wow!", in_reply_to_id = toot["id"])

you can also just write

mastodon.status_post("@somebody wow!", in_reply_to_id = toot)

and everything will work as intended.

Snowflake IDs

Some IDs in Mastodon (such as those for statuses) are Snowflake IDs. These broadly correspond to times, with a low
resolution, so it is possible to convert a time to a Snowflake ID and search for posts between two dates. Mastodon.py
will do the conversion for you automatically when you pass a datetime object as the id.

Note that this functionality will not work on anything but Mastodon and forks, and that it is somewhat inexact due to
the relatively low resolution.

4.1.4 Versioning

Mastodon.py will check if a certain endpoint is available before doing API calls. By default, it checks against the
version of Mastodon retrieved on init(), or the version you specified. Mastodon.py can be set (in the constructor) to
either check if an endpoint is available at all (this is the default) or to check if the endpoint is available and behaves
as in the newest Mastodon version (with regards to parameters as well as return values). Version checking can also be
disabled altogether. If a version check fails, Mastodon.py throws a MastodonVersionError.

Some functions need to check what version of Mastodon they are talking to. These will generally use a cached version
to avoid sending a lot of pointless requests.

Many non-mainline forks have various different formats for their versions and they have different, incompatible ideas
about how to report version. Mastodon.py tries its best to figure out what is going on, but success is not guaranteed.

With the following functions, you can make Mastodon.py re-check the server version or explicitly determine if a specific
minimum Version is available. Long-running applications that aim to support multiple Mastodon versions should do
this from time to time in case a server they are running against updated.

Mastodon.retrieve_mastodon_version()

Determine installed Mastodon version and set major, minor and patch (not including RC info) accordingly.

Returns the version string, possibly including rc info.

Mastodon.verify_minimum_version(version_str, cached=False)
Update version info from server and verify that at least the specified version is present.

If you specify “cached”, the version info update part is skipped.

Returns True if version requirement is satisfied, False if not.

4.1. General information 9

Mastodon.py Documentation, Release 1.8.1

4.1.5 A brief note on block lists

Mastodon.py used to block three instances because these were particularly notorious for harassing trans people and I
don’t feel like I have an obligation to let software I distribute help people who want my friends to die. I don’t want to
be associated with that, at all.

Those instances are now all gone, any point that could have been has been made, and there is no list anymore.

Note: Trans rights are human rights.

4.2 Return values

Unless otherwise specified, all data is returned as Python dictionaries, matching the JSON format used by the API.
Dates returned by the API are in ISO 8601 format and are parsed into Python datetime objects.

To make access easier, the dictionaries returned are wrapped by a class that adds read-only attributes for all dict values
- this means that, for example, instead of writing

description = mastodon.account_verify_credentials()["source"]["note"]

you can also just write

description = mastodon.account_verify_credentials().source.note

and everything will work as intended. The class used for this is exposed as AttribAccessDict.

Currently, some of these may be out of date - refer to the Mastodon documentation at https://docs.joinmastodon.org/
entities/ for when fields seem to be missing. This will be addressed in the next version of Mastodon.py.

4.2.1 User / account dicts

mastodon.account(<numerical id>)
Returns the following dictionary:
{

'id': # Same as <numerical id>
'username': # The username (what you @ them with)
'acct': # The user's account name as username@domain (@domain omitted for local users)
'display_name': # The user's display name
'discoverable': # True if the user is listed in the user directory, false if not.␣

→˓None
for remote users.

'group': # A boolean indicating whether the account represents a group rather than an
individual.

'locked': # Denotes whether the account can be followed without a follow request
'created_at': # Account creation time
'following_count': # How many people they follow
'followers_count': # How many followers they have
'statuses_count': # How many statuses they have
'note': # Their bio
'url': # Their URL; for example 'https://mastodon.social/users/<acct>'
'avatar': # URL for their avatar, can be animated

(continues on next page)

10 Chapter 4. Research use and citing

https://docs.joinmastodon.org/entities/
https://docs.joinmastodon.org/entities/

Mastodon.py Documentation, Release 1.8.1

(continued from previous page)

'header': # URL for their header image, can be animated
'avatar_static': # URL for their avatar, never animated
'header_static': # URL for their header image, never animated
'source': # Additional information - only present for user dict returned

from account_verify_credentials()
'moved_to_account': # If set, a user dict of the account this user has

set up as their moved-to address.
'bot': # Boolean indicating whether this account is automated.
'fields': # List of up to four dicts with free-form 'name' and 'value' profile info.

For fields with "this is me" type verification, verified_at is set to the
last verification date (It is None otherwise)

'emojis': # List of custom emoji used in name, bio or fields
'discoverable': # Indicates whether or not a user is visible on the discovery page

}

mastodon.account_verify_credentials()["source"]
Returns the following dictionary:
{

'privacy': # The user's default visibility setting ("private", "unlisted" or "public")
'sensitive': # Denotes whether user media should be marked sensitive by default
'note': # Plain text version of the user's bio

}

4.2.2 Toot / Status dicts

mastodon.toot("Hello from Python")
Returns the following dictionary:
{

'id': # Numerical id of this toot
'uri': # Descriptor for the toot

EG 'tag:mastodon.social,2016-11-25:objectId=<id>:objectType=Status'
'url': # URL of the toot
'account': # User dict for the account which posted the status
'in_reply_to_id': # Numerical id of the toot this toot is in response to
'in_reply_to_account_id': # Numerical id of the account this toot is in response to
'reblog': # Denotes whether the toot is a reblog. If so, set to the original toot␣

→˓dict.
'content': # Content of the toot, as HTML: '<p>Hello from Python</p>'
'created_at': # Creation time
'reblogs_count': # Number of reblogs
'favourites_count': # Number of favourites
'reblogged': # Denotes whether the logged in user has boosted this toot
'favourited': # Denotes whether the logged in user has favourited this toot
'sensitive': # Denotes whether media attachments to the toot are marked sensitive
'spoiler_text': # Warning text that should be displayed before the toot content
'visibility': # Toot visibility ('public', 'unlisted', 'private', or 'direct')
'mentions': # A list of users dicts mentioned in the toot, as Mention dicts
'media_attachments': # A list of media dicts of attached files
'emojis': # A list of custom emojis used in the toot, as Emoji dicts
'tags': # A list of hashtag used in the toot, as Hashtag dicts

(continues on next page)

4.2. Return values 11

Mastodon.py Documentation, Release 1.8.1

(continued from previous page)

'bookmarked': # True if the status is bookmarked by the logged in user, False if not.
'application': # Application dict for the client used to post the toot (Does not␣

→˓federate
and is therefore always None for remote toots, can also be None for
local toots for some legacy applications).

'language': # The language of the toot, if specified by the server,
as ISO 639-1 (two-letter) language code.

'muted': # Boolean denoting whether the user has muted this status by
way of conversation muting

'pinned': # Boolean denoting whether or not the status is currently pinned for the
associated account.

'replies_count': # The number of replies to this status.
'card': # A preview card for links from the status, if present at time of delivery,

as card dict.
'poll': # A poll dict if a poll is attached to this status.

}

4.2.3 Status edit dicts

mastodonstatus_history(id)[0]
Returns the following dictionary
{

'content': # Content for this version of the status
'spoiler_text': # CW / Spoiler text for this version of the status
'sensitive': # Whether media in this version of the status is marked as sensitive
'created_at': # Time at which this version of the status was posted
'account': # Account dict of the user that posted the status
'media_attachments': # List of media dicts with the attached media for this version␣

→˓of the status
'emojis'# List of emoji dicts for this version of the status

}

4.2.4 Mention dicts

{
'url': # Mentioned user's profile URL (potentially remote)
'username': # Mentioned user's user name (not including domain)
'acct': # Mentioned user's account name (including domain)
'id': # Mentioned user's (local) account ID

}

12 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

4.2.5 Scheduled status / toot dicts

mastodon.status_post("text", scheduled_at=the_future)
Returns the following dictionary:
{

'id': # Scheduled toot ID (note: Not the id of the toot once it gets posted!)
'scheduled_at': # datetime object describing when the toot is to be posted
'params': # Parameters for the scheduled toot, specifically
{

'text': # Toot text
'in_reply_to_id': # ID of the toot this one is a reply to
'media_ids': # IDs of media attached to this toot
'sensitive': # Whether this toot is sensitive or not
'visibility': # Visibility of the toot
'idempotency': # Idempotency key for the scheduled toot
'scheduled_at': # Present, but generally "None"
'spoiler_text': # CW text for this toot
'application_id': # ID of the application that scheduled the toot
'poll': # Poll parameters, as a poll dict

},
'media_attachments': # Array of media dicts for the attachments to the scheduled toot

}

4.2.6 Poll dicts

Returns the following dictionary:
mastodon.poll(id)
{

'id': # The polls ID
'expires_at': # The time at which the poll is set to expire
'expired': # Boolean denoting whether you can still vote in this poll
'multiple': # Boolean indicating whether it is allowed to vote for more than one␣

→˓option
'votes_count': # Total number of votes cast in this poll
'voted': # Boolean indicating whether the logged-in user has already voted in this␣

→˓poll
'options': # The poll options as a list of dicts, each option with a title and a

votes_count field. votes_count can be None if the poll creator has
chosen to hide vote totals until the poll expires and it hasn't yet.

'emojis': # List of emoji dicts for all emoji used in answer strings,
'own_votes': # The logged-in users votes, as a list of indices to the options.

}

4.2. Return values 13

Mastodon.py Documentation, Release 1.8.1

4.2.7 Conversation dicts

mastodon.conversations()[0]
Returns the following dictionary:
{

'id': # The ID of this conversation object
'unread': # Boolean indicating whether this conversation has yet to be

read by the user
'accounts': # List of accounts (other than the logged-in account) that

are part of this conversation
'last_status': # The newest status in this conversation

}

4.2.8 Hashtag dicts

{
'name': # Hashtag name (not including the #)
'url': # Hashtag URL (can be remote)
'history': # List of usage history dicts for up to 7 days. Not present in statuses.

}

4.2.9 Hashtag usage history dicts

{
'day': # Date of the day this history dict is for
'uses': # Number of statuses using this hashtag on that day
'accounts': # Number of accounts using this hashtag in at least one status on that␣

→˓day
}

4.2.10 Emoji dicts

{
'shortcode': # Emoji shortcode, without surrounding colons
'url': # URL for the emoji image, can be animated
'static_url': # URL for the emoji image, never animated
'visible_in_picker': # True if the emoji is enabled, False if not.
'category': # The category to display the emoji under (not present if none is set)

}

14 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

4.2.11 Application dicts

{
'name': # The applications name
'website': # The applications website
'vapid_key': # A vapid key that can be used in web applications

}

4.2.12 Relationship dicts

mastodon.account_follow(<numerical id>)
Returns the following dictionary:
{

'id': # Numerical id (same one as <numerical id>)
'following': # Boolean denoting whether the logged-in user follows the specified user
'followed_by': # Boolean denoting whether the specified user follows the logged-in␣

→˓user
'blocking': # Boolean denoting whether the logged-in user has blocked the specified␣

→˓user
'blocked_by': # Boolean denoting whether the logged-in user has been blocked by the␣

→˓specified user, if information is available
'muting': # Boolean denoting whether the logged-in user has muted the specified user
'muting_notifications': # Boolean denoting wheter the logged-in user has muted␣

→˓notifications
related to the specified user

'requested': # Boolean denoting whether the logged-in user has sent the specified
user a follow request

'domain_blocking': # Boolean denoting whether the logged-in user has blocked the
specified users domain

'showing_reblogs': # Boolean denoting whether the specified users reblogs show up on␣
→˓the

logged-in users Timeline
'endorsed': # Boolean denoting wheter the specified user is being endorsed /␣

→˓featured by the
logged-in user

'note': # A free text note the logged in user has created for this account (not␣
→˓publicly visible)
'notifying' # Boolean denoting whether the logged-in user has requested to get␣

→˓notified every time the followed user posts
}

4.2. Return values 15

Mastodon.py Documentation, Release 1.8.1

4.2.13 Filter dicts

mastodon.filter(<numerical id>)
Returns the following dictionary:
{

'id': # Numerical id of the filter
'phrase': # Filtered keyword or phrase
'context': # List of places where the filters are applied ('home', 'notifications',

→˓'public', 'thread')
'expires_at': # Expiry date for the filter
'irreversible': # Boolean denoting if this filter is executed server-side

or if it should be ran client-side.
'whole_word': # Boolean denoting whether this filter can match partial words

}

4.2.14 Notification dicts

mastodon.notifications()[0]
Returns the following dictionary:
{

'id': # id of the notification
'type': # "mention", "reblog", "favourite", "follow", "poll" or "follow_request"
'created_at': # The time the notification was created
'account': # User dict of the user from whom the notification originates
'status': # In case of "mention", the mentioning status

In case of reblog / favourite, the reblogged / favourited status
}

4.2.15 Context dicts

mastodon.status_context(<numerical id>)
Returns the following dictionary:
{

'ancestors': # A list of toot dicts
'descendants': # A list of toot dicts

}

4.2.16 List dicts

mastodon.list(<numerical id>)
Returns the following dictionary:
{

'id': # id of the list
'title': # title of the list

}

16 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

4.2.17 Media dicts

mastodon.media_post("image.jpg", "image/jpeg")
Returns the following dictionary:
{

'id': # The ID of the attachment.
'type': # Media type: 'image', 'video', 'gifv', 'audio' or 'unknown'.
'url': # The URL for the image in the local cache
'remote_url': # The remote URL for the media (if the image is from a remote instance)
'preview_url': # The URL for the media preview
'text_url': # The display text for the media (what shows up in toots)
'meta': # Dictionary of two metadata dicts (see below),

'original' and 'small' (preview). Either may be empty.
May additionally contain an "fps" field giving a videos frames per second␣

→˓(possibly
rounded), and a "length" field giving a videos length in a human-readable␣

→˓format.
Note that a video may have an image as preview.
May also contain a 'focus' dict and a media 'colors' dict.

'blurhash': # The blurhash for the image, used for preview / placeholder generation
'description': # If set, the user-provided description for this media.

}

Metadata dicts (image) - all fields are optional:
{
'width': # Width of the image in pixels
'height': # Height of the image in pixels
'aspect': # Aspect ratio of the image as a floating point number
'size': # Textual representation of the image size in pixels, e.g. '800x600'

}

Metadata dicts (video, gifv) - all fields are optional:
{

'width': # Width of the video in pixels
'heigh': # Height of the video in pixels
'frame_rate': # Exact frame rate of the video in frames per second.

Can be an integer fraction (i.e. "20/7")
'duration': # Duration of the video in seconds
'bitrate': # Average bit-rate of the video in bytes per second

}

Metadata dicts (audio) - all fields are optional:
{

'duration': # Duration of the audio file in seconds
'bitrate': # Average bit-rate of the audio file in bytes per second

}

Focus Metadata dict:
{

'x': # Focus point x coordinate (between -1 and 1)
'y': # Focus point x coordinate (between -1 and 1)

}

(continues on next page)

4.2. Return values 17

Mastodon.py Documentation, Release 1.8.1

(continued from previous page)

Media colors dict:
{

'foreground': # Estimated foreground colour for the attachment thumbnail
'background': # Estimated background colour for the attachment thumbnail
'accent': # Estimated accent colour for the attachment thumbnail

}

4.2.18 Card dicts

mastodon.status_card(<numerical id>):
Returns the following dictionary
{

'url': # The URL of the card.
'title': # The title of the card.
'description': # The description of the card.
'type': # Embed type: 'link', 'photo', 'video', or 'rich'
'image': # (optional) The image associated with the card.

OEmbed data (all optional):
'author_name': # Name of the embedded contents author
'author_url': # URL pointing to the embedded contents author
'description': # Description of the embedded content
'width': # Width of the embedded object
'height': # Height of the embedded object
'html': # HTML string of the embed
'provider_name': # Name of the provider from which the embed originates
'provider_url': # URL pointing to the embeds provider
'blurhash': # (optional) Blurhash of the preview image

}

4.2.19 Search result dicts

mastodon.search("<query>")
Returns the following dictionary
{

'accounts': # List of user dicts resulting from the query
'hashtags': # List of hashtag dicts resulting from the query
'statuses': # List of toot dicts resulting from the query

}

18 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

4.2.20 Instance dicts

mastodon.instance()
Returns the following dictionary
{

'domain': # The instances domain name
'description': # A brief instance description set by the admin
'short_description': # An even briefer instance description
'email': # The admin contact email
'title': # The instance's title
'uri': # The instance's URL
'version': # The instance's Mastodon version
'urls': # Additional URLs dict, presently only 'streaming_api' with the

stream websocket address.
'stats': # A dictionary containing three stats, user_count (number of local users),

status_count (number of local statuses) and domain_count (number of known
instance domains other than this one).

'contact_account': # User dict of the primary contact for the instance
'languages': # Array of ISO 639-1 (two-letter) language codes the instance

has chosen to advertise.
'registrations': # Boolean indication whether registrations on this instance are open

(True) or not (False)
'approval_required': # True if account approval is required when registering,
'rules': # List of dicts with `id` and `text` fields, one for each server rule set by␣

→˓the admin
}

4.2.21 Activity dicts

mastodon.instance_activity()[0]
Returns the following dictionary
{

'week': # Date of the first day of the week the stats were collected for
'logins': # Number of users that logged in that week
'registrations': # Number of new users that week
'statuses': # Number of statuses posted that week

}

4.2.22 Report dicts

mastodon.admin_reports()[0]
Returns the following dictionary
{

'id': # Numerical id of the report
'action_taken': # True if a moderator or admin has processed the

report, False otherwise.

The following fields are only present in the report dicts returned by moderation␣
→˓API:
'comment': # Text comment submitted with the report

(continues on next page)

4.2. Return values 19

Mastodon.py Documentation, Release 1.8.1

(continued from previous page)

'created_at': # Time at which this report was created, as a datetime object
'updated_at': # Last time this report has been updated, as a datetime object
'account': # User dict of the user that filed this report
'target_account': # Account that has been reported with this report
'assigned_account': # If the report as been assigned to an account,

User dict of that account (None if not)
'action_taken_by_account': # User dict of the account that processed this report
'statuses': # List of statuses attached to the report, as toot dicts

}

4.2.23 Push subscription dicts

mastodon.push_subscription()
Returns the following dictionary
{

'id': # Numerical id of the push subscription
'endpoint': # Endpoint URL for the subscription
'server_key': # Server pubkey used for signature verification
'alerts': # Subscribed events - dict that may contain keys 'follow',

'favourite', 'reblog' and 'mention', with value True
if webpushes have been requested for those events.

}

4.2.24 Push notification dicts

mastodon.push_subscription_decrypt_push(...)
Returns the following dictionary
{

'access_token': # Access token that can be used to access the API as the
notified user

'body': # Text body of the notification
'icon': # URL to an icon for the notification
'notification_id': # ID that can be passed to notification() to get the full

notification object,
'notification_type': # 'mention', 'reblog', 'follow' or 'favourite'
'preferred_locale': # The user's preferred locale
'title': # Title for the notification

}

20 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

4.2.25 Preference dicts

mastodon.preferences()
Returns the following dictionary
{

'posting:default:visibility': # The default visibility setting for the user's posts,
as a string

'posting:default:sensitive': # Boolean indicating whether the user's uploads should
be marked sensitive by default

'posting:default:language': # The user's default post language, if set (None if not)
'reading:expand:media': # How the user wishes to be shown sensitive media. Can be

'default' (hide if sensitive), 'hide_all' or 'show_all'
'reading:expand:spoilers': # Boolean indicating whether the user wishes to expand

content warnings by default
}

4.2.26 Featured tag dicts

mastodon.featured_tags()[0]
Returns the following dictionary:
{

'id': # The featured tags id
'name': # The featured tags name (without leading #)
'statuses_count': # Number of publicly visible statuses posted with this hashtag␣

→˓that this instance knows about
'last_status_at': # The last time a public status containing this hashtag was added␣

→˓to this instance's database
(can be None if there are none)

}

4.2.27 Read marker dicts

mastodon.markers_get()["home"]
Returns the following dictionary:
{

'last_read_id': # ID of the last read object in the timeline
'version': # A counter that is incremented whenever the marker is set to a new status
'updated_at': # The time the marker was last set, as a datetime object

}

4.2. Return values 21

Mastodon.py Documentation, Release 1.8.1

4.2.28 Announcement dicts

mastodon.annoucements()[0]
Returns the following dictionary:
{

'id': # The annoucements id
'content': # The contents of the annoucement, as an html string
'starts_at': # The annoucements start time, as a datetime object. Can be None
'ends_at': # The annoucements end time, as a datetime object. Can be None
'all_day': # Boolean indicating whether the annoucement represents an "all day" event
'published_at': # The annoucements publish time, as a datetime object
'updated_at': # The annoucements last updated time, as a datetime object
'read': # A boolean indicating whether the logged in user has dismissed the␣

→˓annoucement
'mentions': # Users mentioned in the annoucement, as a list of mention dicts
'tags': # Hashtags mentioned in the announcement, as a list of hashtag dicts
'emojis': # Custom emoji used in the annoucement, as a list of emoji dicts
'reactions': # Reactions to the annoucement, as a list of reaction dicts (documented␣

→˓inline here):
[{

'name': # Name of the custom emoji or unicode emoji of the reaction
'count': # Reaction counter (i.e. number of users who have added this reaction)
'me': # True if the logged-in user has reacted with this emoji, false otherwise
'url': # URL for the custom emoji image
'static_url': # URL for a never-animated version of the custom emoji image

}],
}

4.2.29 Familiar follower dicts

mastodon.account_familiar_followers(1)[0]
Returns the following dictionary:
{

'id': # ID of the account for which the familiar followers are being returned
'accounts': # List of account dicts of the familiar followers

}

4.2.30 Admin account dicts

mastodon.admin_account(id)
Returns the following dictionary
{

'id': # The users id,
'username': # The users username, no leading @
'domain': # The users domain
'created_at': # The time of account creation
'email': # For local users, the user's email
'ip': # For local users, the user's last known IP address
'role': # 'admin', 'moderator' or None
'confirmed': # For local users, False if the user has not confirmed their email,␣

(continues on next page)

22 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

(continued from previous page)

→˓True otherwise
'suspended': # Boolean indicating whether the user has been suspended
'silenced': # Boolean indicating whether the user has been suspended
'disabled': # For local users, boolean indicating whether the user has had their␣

→˓login disabled
'approved': # For local users, False if the user is pending, True otherwise
'locale': # For local users, the locale the user has set,
'invite_request': # If the user requested an invite, the invite request comment of␣

→˓that user.
'invited_by_account_id': # Present if the user was invited by another user and set␣

→˓to the inviting users id.
'account': # The user's account, as a standard user dict

}

4.2.31 Admin domain block dicts

4.2.32 Admin measure dicts

api.admin_measures(datetime.now() - timedelta(hours=24*5), datetime.now(), active_
→˓users=True)
Returns the following dictionary
{

'key': # Name of the measure returned
'unit': # Unit for the measure, if available
'total': # Value of the measure returned
'human_value': # Human readable variant of the measure returned
'data': # A list of dicts with the measure broken down by date, as below

}

The data dicts:
[

'date': # Date for this row
'value': # Value of the measure for this row

}

4.2.33 Admin dimension dicts

api.admin_dimensions(datetime.now() - timedelta(hours=24*5), datetime.now(),␣
→˓languages=True)
Returns the following dictionary
{

'key': # Name of the dimension returned
'data': # A list of data dicts, as below

}

the data dicts:
{

'key': # category for this row
(continues on next page)

4.2. Return values 23

Mastodon.py Documentation, Release 1.8.1

(continued from previous page)

'human_key': # Human readable name for the category for this row, when available
'value': # Numeric value for the category

},

4.2.34 Admin retention dicts

api.admin_retention(datetime.now() - timedelta(hours=24*5), datetime.now())
Returns the following dictionary
{

'period': # Starting time of the period that the data is being returned for
'frequency': # Time resolution (day or month) for the returned data
'data': # List of data dicts, as below

}

the data dicts:
{

'date': # Date for this entry
'rate': # Fraction of users retained
'value': # Absolute number of users retained

}

4.3 Error handling

When Mastodon.py encounters an error, it will raise an exception, generally with some text included to tell you what
went wrong.

The base class that all Mastodon exceptions inherit from is MastodonError. If you are only interested in the fact an
error was raised somewhere in Mastodon.py, and not the details, this is the exception you can catch.

MastodonIllegalArgumentError is generally a programming problem - you asked the API to do something obviously
invalid (i.e. specify a privacy option that does not exist).

MastodonFileNotFoundError and MastodonNetworkError are IO errors - could be you specified a wrong URL, could
be the internet is down or your hard drive is dying. They inherit from MastodonIOError, for easy catching. There is a
sub-error of MastodonNetworkError, MastodonReadTimeout, which is thrown when a streaming API stream times out
during reading.

MastodonAPIError is an error returned from the Mastodon instance - the server has decided it can’t fulfil your request
(i.e. you requested info on a user that does not exist). It is further split into MastodonNotFoundError (API returned
404) and MastodonUnauthorizedError (API returned 401). Different error codes might exist, but are not currently
handled separately.

MastodonMalformedEventError is raised when a streaming API listener receives an invalid event. There have been
reports that this can sometimes happen after prolonged operation due to an upstream problem in the requests/urllib
libraries.

MastodonRatelimitError is raised when you hit an API rate limit. You should try again after a while (see the rate
limiting section above).

MastodonServerError is raised when the server throws an internal error, likely due to server misconfiguration.

MastodonVersionError is raised when a version check for an API call fails.

24 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

4.4 App registration, authentication and preferences

Before you can use the Mastodon API, you have to register your application (which gets you a client key and client
secret) and then log in (which gets you an access token) and out (revoking the access token you are logged in with).
These functions allow you to do those things. Additionally, it is also possible to programmatically register a new user.

For convenience, once you have a client id, secret and access token, you can simply pass them to the constructor of the
class, too!

Note that while it is perfectly reasonable to log back in whenever your app starts, registering a new application on
every startup is not, so don’t do that - instead, register an application once, and then persist your client id and secret. A
convenient method for this is provided by the functions dealing with registering the app, logging in and the Mastodon
classes constructor.

4.4.1 App registration and information

static Mastodon.create_app(client_name, scopes: List[str] = ['read', 'write', 'follow', 'push'], redirect_uris: str
| List[str] | None = None, website: str | None = None, to_file: str | PurePath |
None = None, api_base_url: str | None = None, request_timeout: float = 300,
session: Session | None = None, user_agent: str = 'mastodonpy')→ Tuple[str, str]

Create a new app with given client_name and scopes (The basic scopes are “read”, “write”, “follow” and “push”
- more granular scopes are available, please refer to Mastodon documentation for which) on the instance given
by api_base_url.

Specify redirect_uris if you want users to be redirected to a certain page after authenticating in an OAuth flow.
You can specify multiple URLs by passing a list. Note that if you wish to use OAuth authentication with redirects,
the redirect URI must be one of the URLs specified here.

Specify to_file to persist your app’s info to a file so you can use it in the constructor. Specify website to give a
website for your app.

Specify session with a requests.Session for it to be used instead of the default. This can be used to, amongst other
things, adjust proxy or SSL certificate settings.

Specify user_agent if you want to use a specific name as User-Agent header, otherwise “mastodonpy” will be
used.

Presently, app registration is open by default, but this is not guaranteed to be the case for all Mastodon instances
in the future.

Returns client_id and client_secret, both as strings.

Mastodon.app_verify_credentials()→ Application
Fetch information about the current application.

Added: Mastodon v2.0.0, last changed: Mastodon v2.7.2

4.4. App registration, authentication and preferences 25

Mastodon.py Documentation, Release 1.8.1

4.4.2 Authentication

Mastodon.__init__(client_id: str | PurePath | None = None, client_secret: str | None = None, access_token: str |
PurePath | None = None, api_base_url: str | None = None, debug_requests: bool = False,
ratelimit_method: str = 'wait', ratelimit_pacefactor: float = 1.1, request_timeout: float = 300,
mastodon_version: str | None = None, version_check_mode: str = 'created', session: Session
| None = None, feature_set: str = 'mainline', user_agent: str = 'mastodonpy', lang: str | None
= None)

Create a new API wrapper instance based on the given client_secret and client_id on the instance given by
api_base_url. If you give a client_id and it is not a file, you must also give a secret. If you specify an access_token
then you don’t need to specify a client_id. It is allowed to specify neither - in this case, you will be restricted to
only using endpoints that do not require authentication. If a file is given as client_id, client ID, secret and base
url are read from that file.

You can also specify an access_token, directly or as a file (as written by log_in()). If a file is given, Mastodon.py
also tries to load the base URL from this file, if present. A client id and secret are not required in this case.

Mastodon.py can try to respect rate limits in several ways, controlled by ratelimit_method. “throw” makes func-
tions throw a MastodonRatelimitError when the rate limit is hit. “wait” mode will, once the limit is hit, wait and
retry the request as soon as the rate limit resets, until it succeeds. “pace” works like throw, but tries to wait in
between calls so that the limit is generally not hit (how hard it tries to avoid hitting the rate limit can be controlled
by ratelimit_pacefactor). The default setting is “wait”. Note that even in “wait” and “pace” mode, requests can
still fail due to network or other problems! Also note that “pace” and “wait” are NOT thread safe.

By default, a timeout of 300 seconds is used for all requests. If you wish to change this, pass the desired timeout
(in seconds) as request_timeout.

For fine-tuned control over the requests object use session with a requests.Session.

The mastodon_version parameter can be used to specify the version of Mastodon that Mastodon.py will expect
to be installed on the server. The function will throw an error if an unparseable Version is specified. If no version
is specified, Mastodon.py will set mastodon_version to the detected version.

The version check mode can be set to “created” (the default behaviour), “changed” or “none”. If set to “created”,
Mastodon.py will throw an error if the version of Mastodon it is connected to is too old to have an endpoint. If it
is set to “changed”, it will throw an error if the endpoint’s behaviour has changed after the version of Mastodon
that is connected has been released. If it is set to “none”, version checking is disabled.

feature_set can be used to enable behaviour specific to non-mainline Mastodon API implementations. Details
are documented in the functions that provide such functionality. Currently supported feature sets are mainline,
fedibird and pleroma.

For some Mastodon instances a User-Agent header is needed. This can be set by parameter user_agent. Starting
from Mastodon.py 1.5.2 create_app() stores the application name into the client secret file. If client_id points to
this file, the app name will be used as User-Agent header as default. It is possible to modify old secret files and
append a client app name to use it as a User-Agent name.

lang can be used to change the locale Mastodon will use to generate responses. Valid parameters are all ISO
639-1 (two letter) or for a language that has none, 639-3 (three letter) language codes. This affects some error
messages (those related to validation) and trends. You can change the language using set_language().

If no other User-Agent is specified, “mastodonpy” will be used.

Mastodon.log_in(username: str | None = None, password: str | None = None, code: str | None = None,
redirect_uri: str = 'urn:ietf:wg:oauth:2.0:oob', refresh_token: str | None = None, scopes:
List[str] = ['read', 'write', 'follow', 'push'], to_file=typing.Union[str, pathlib.PurePath])→ str

Get the access token for a user.

The username is the email address used to log in into Mastodon.

26 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Can persist access token to file to_file, to be used in the constructor.

Handles password and OAuth-based authorization.

Will throw a MastodonIllegalArgumentError if the OAuth flow data or the username / password credentials given
are incorrect, and MastodonAPIError if all of the requested scopes were not granted.

For OAuth 2, obtain a code via having your user go to the URL returned by auth_request_url() and pass it as the
code parameter. In this case, make sure to also pass the same redirect_uri parameter as you used when generating
the auth request URL. If passing code`you should not pass `username or password.

Returns the access token as a string.

Mastodon.auth_request_url(client_id: str | PurePath | None = None, redirect_uris: str =
'urn:ietf:wg:oauth:2.0:oob', scopes: List[str] = ['read', 'write', 'follow', 'push'],
force_login: bool = False, state: str | None = None, lang: str | None = None)→ str

Returns the URL that a client needs to request an OAuth grant from the server.

To log in with OAuth, send your user to this URL. The user will then log in and get a code which you can pass
to log_in().

scopes are as in log_in(), redirect_uris is where the user should be redirected to after authentication. Note that
redirect_uris must be one of the URLs given during app registration, and that despite the plural-like name, you
only get to use one here. When using urn:ietf:wg:oauth:2.0:oob, the code is simply displayed, otherwise it is
added to the given URL as the “code” request parameter.

Pass force_login if you want the user to always log in even when already logged into web Mastodon (i.e. when
registering multiple different accounts in an app).

state is the oauth state parameter to pass to the server. It is strongly suggested to use a random, nonguessable
value (i.e. nothing meaningful and no incrementing ID) to preserve security guarantees. It can be left out for
non-web login flows.

Pass an ISO 639-1 (two letter) or, for languages that do not have one, 639-3 (three letter) language code as lang
to control the display language for the oauth form.

Mastodon.set_language(lang)
Set the locale Mastodon will use to generate responses. Valid parameters are all ISO 639-1 (two letter) or, for
languages that do not have one, 639-3 (three letter) language codes. This affects some error messages (those
related to validation) and trends.

Mastodon.revoke_access_token()

Revoke the oauth token the user is currently authenticated with, effectively removing the apps access and requir-
ing the user to log in again.

Mastodon.create_account(username: str, password: str, email: str, agreement: bool = False, reason: str | None
= None, locale: str = 'en', scopes: List[str] = ['read', 'write', 'follow', 'push'], to_file:
str | None = None, return_detailed_error: bool = False)→ str | None | Tuple[str |
None, AccountCreationError]

Creates a new user account with the given username, password and email. “agreement” must be set to true (after
showing the user the instance’s user agreement and having them agree to it), “locale” specifies the language
for the confirmation email as an ISO 639-1 (two letter) or, if a language does not have one, 639-3 (three letter)
language code. reason can be used to specify why a user would like to join if approved-registrations mode is on.

Does not require an access token, but does require a client grant.

By default, this method is rate-limited by IP to 5 requests per 30 minutes.

Returns an access token (just like log_in), which it can also persist to to_file, and sets it internally so that the user
is now logged in. Note that this token can only be used after the user has confirmed their email.

4.4. App registration, authentication and preferences 27

urn:ietf:wg:oauth:2.0:oob

Mastodon.py Documentation, Release 1.8.1

By default, the function will throw if the account could not be created. Alternately, when return_detailed_error
is passed, Mastodon.py will return the detailed error response that the API provides (Starting from version 3.4.0
- not checked here) as an dict with error details as the second return value and the token returned as None in case
of error. The dict will contain a text error values as well as a details value which is a dict with one optional key
for each potential field (username, password, email and agreement), each if present containing a dict with an
error category and free text description. Valid error categories are:

• ERR_BLOCKED - When e-mail provider is not allowed

• ERR_UNREACHABLE - When e-mail address does not resolve to any IP via DNS (MX, A, AAAA)

• ERR_TAKEN - When username or e-mail are already taken

• ERR_RESERVED - When a username is reserved, e.g. “webmaster” or “admin”

• ERR_ACCEPTED - When agreement has not been accepted

• ERR_BLANK - When a required attribute is blank

• ERR_INVALID - When an attribute is malformed, e.g. wrong characters or invalid e-mail address

• ERR_TOO_LONG - When an attribute is over the character limit

• ERR_TOO_SHORT - When an attribute is under the character requirement

• ERR_INCLUSION - When an attribute is not one of the allowed values, e.g. unsupported locale

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0

Mastodon.email_resend_confirmation()

Requests a re-send of the users confirmation mail for an unconfirmed logged in user.

Only available to the app that the user originally signed up with.

Added: Mastodon v3.4.0, last changed: Mastodon v3.4.0

4.4.3 User preferences

Mastodon.preferences()→ Preferences
Fetch the user’s preferences, which can be used to set some default options. As of 2.8.0, apps can only fetch, not
update preferences.

Added: Mastodon v2.8.0, last changed: Mastodon v2.8.0

4.5 Statuses, media and polls

4.5.1 Statuses

These functions allow you to get information about single statuses and to post and update them, as well as to favourite,
bookmark, mute reblog (“boost”) and to undo all of those. For status pinning, check out TODO and TODO on the
accounts page.

28 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Reading

Mastodon.status(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Fetch information about a single toot.

Does not require authentication for publicly visible statuses.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0

Mastodon.status_context(id: Status | str | int | MaybeSnowflakeIdType)→ Context
Fetch information about ancestors and descendants of a toot.

Does not require authentication for publicly visible statuses.

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0

Mastodon.status_reblogged_by(id: Status | str | int | MaybeSnowflakeIdType)→ NonPaginatableList[Account]
Fetch a list of users that have reblogged a status.

Does not require authentication for publicly visible statuses.

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0

Mastodon.status_favourited_by(id: Status | str | int | MaybeSnowflakeIdType)→
NonPaginatableList[Account]

Fetch a list of users that have favourited a status.

Does not require authentication for publicly visible statuses.

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0

Mastodon.status_card(id: Status | str | int | MaybeSnowflakeIdType)→ PreviewCard
Fetch a card associated with a status. A card describes an object (such as an external video or link) embedded
into a status.

Does not require authentication for publicly visible statuses.

This function is deprecated as of 3.0.0 and the endpoint does not exist anymore - you should just use the “card”
field of the status dicts instead. Mastodon.py will try to mimic the old behaviour, but this is somewhat inefficient
and not guaranteed to be the case forever.

Added: Mastodon v1.0.0, last changed: Mastodon v3.0.0

Mastodon.status_history(id: Status | str | int | MaybeSnowflakeIdType)→ NonPaginatableList[Status]
Returns the edit history of a status as a list of Status objects, starting from the original form. Note that this means
that a status that has been edited once will have two entries in this list, a status that has been edited twice will
have three, and so on.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.status_source(id: Status | str | int | MaybeSnowflakeIdType)→ StatusSource
Returns the source of a status for editing.

Return value is a dictionary containing exactly the parameters you could pass to status_update() to change nothing
about the status, except status is text instead.

Mastodon.favourites(max_id: str | int | MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int | MaybeSnowflakeIdType | None
= None, limit: int | None = None)→ PaginatableList[Status]

Fetch the logged-in user’s favourited statuses.

This endpoint uses internal ids for pagination, passing status ids to max_id, min_id, or since_id will not work.

4.5. Statuses, media and polls 29

Mastodon.py Documentation, Release 1.8.1

Returns a list of status dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0

Mastodon.bookmarks(max_id: str | int | MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int | MaybeSnowflakeIdType | None =
None, limit: int | None = None)→ PaginatableList[Status]

Get a list of statuses bookmarked by the logged-in user.

This endpoint uses internal ids for pagination, passing status ids to max_id, min_id, or since_id will not work.

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

Writing

Mastodon.status_post(status: str, in_reply_to_id: Status | str | int | MaybeSnowflakeIdType | None = None,
media_ids: List[MediaAttachment | str | int | MaybeSnowflakeIdType] | None = None,
sensitive: bool = False, visibility: str | None = None, spoiler_text: str | None = None,
language: str | None = None, idempotency_key: str | None = None, content_type: str |
None = None, scheduled_at: datetime | None = None, poll: Poll | str | int |
MaybeSnowflakeIdType | None = None, quote_id: Status | str | int |
MaybeSnowflakeIdType | None = None)→ Status | ScheduledStatus

Post a status. Can optionally be in reply to another status and contain media.

media_ids should be a list. (If it’s not, the function will turn it into one.) It can contain up to four pieces of
media (uploaded via media_post()). media_ids can also be the `media dicts`_ returned by media_post() - they
are unpacked automatically.

The sensitive boolean decides whether or not media attached to the post should be marked as sensitive, which
hides it by default on the Mastodon web front-end.

The visibility parameter is a string value and accepts any of:

• 'direct' - post will be visible only to mentioned users, known in Mastodon’s UI as “Mentioned users
only”

• 'private' - post will be visible only to followers, known in Mastodon’s UI as “Followers only”

• 'unlisted' - post will be public but will not appear on the public timelines

• 'public' - post will be public and will appear on public timelines

If not passed in, visibility defaults to match the current account’s default-privacy setting (starting with Mastodon
version 1.6) or its locked setting - 'private' if the account is locked, 'public' otherwise (for Mastodon
versions lower than 1.6).

The spoiler_text parameter is a string to be shown as a warning before the text of the status. If no text is passed
in, no warning will be displayed.

Specify language to override automatic language detection. The parameter accepts all valid ISO 639-1 (2-letter)
or for languages where that do not have one, 639-3 (three letter) language codes.

You can set idempotency_key to a value to uniquely identify an attempt at posting a status. Even if you call this
function more than once, if you call it with the same idempotency_key, only one status will be created.

Pass a datetime as scheduled_at to schedule the toot for a specific time (the time must be at least 5 minutes into
the future). If this is passed, status_post returns a scheduled status dict instead.

Pass poll to attach a poll to the status. An appropriate object can be constructed using make_poll() . Note that
as of Mastodon version 2.8.2, you can only have either media or a poll attached, not both at the same time.

30 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Specific to “pleroma” feature set:: Specify content_type to set the content type of your post on Pleroma. It
accepts ‘text/plain’ (default), ‘text/markdown’, ‘text/html’ and ‘text/bbcode’. This parameter is not supported on
Mastodon servers, but will be safely ignored if set.

Specific to “fedibird” feature set:: The quote_id parameter is a non-standard extension that specifies the id of
a quoted status.

Returns a status dict with the new status.

Added: Mastodon v1.0.0, last changed: Mastodon v2.8.0

Mastodon.status_reply(to_status: Status | str | int | MaybeSnowflakeIdType, status: str, media_ids:
List[MediaAttachment | str | int | MaybeSnowflakeIdType] | None = None, sensitive:
bool = False, visibility: str | None = None, spoiler_text: str | None = None, language:
str | None = None, idempotency_key: str | None = None, content_type: str | None =
None, scheduled_at: datetime | None = None, poll: Poll | str | int |
MaybeSnowflakeIdType | None = None, quote_id: Status | str | int |
MaybeSnowflakeIdType | None = None, untag: bool = False)→ Status

Helper function - acts like status_post, but prepends the name of all the users that are being replied to the status
text and retains CW and visibility if not explicitly overridden.

Note that to_status should be a status dict and not an ID.

Set untag to True if you want the reply to only go to the user you are replying to, removing every other mentioned
user from the conversation.

Added: Mastodon v1.0.0, last changed: Mastodon v2.8.0

Mastodon.toot(status: str)→ Status
Synonym for status_post() that only takes the status text as input.

Usage in production code is not recommended.

Added: Mastodon v1.0.0, last changed: Mastodon v2.8.0

Mastodon.make_poll(options: List[str], expires_in: int, multiple: bool = False, hide_totals: bool = False)→ Poll
Generate a poll object that can be passed as the poll option when posting a status.

options is an array of strings with the poll options (Maximum, by default: 4 - see the instance configuration for
the actual value on any given instance, if stated). expires_in is the time in seconds for which the poll should be
open. Set multiple to True to allow people to choose more than one answer. Set hide_totals to True to hide the
results of the poll until it has expired.

Added: Mastodon v2.8.0, last changed: Mastodon v2.8.0

Mastodon.status_reblog(id: Status | str | int | MaybeSnowflakeIdType, visibility: str | None = None)→ Status
Reblog / boost a status.

The visibility parameter functions the same as in status_post() and allows you to reduce the visibility of a re-
blogged status.

Returns a new Status that wraps around the reblogged status.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0

Mastodon.status_unreblog(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Un-reblog a status.

Returns the status that used to be reblogged.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0

4.5. Statuses, media and polls 31

Mastodon.py Documentation, Release 1.8.1

Mastodon.status_favourite(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Favourite a status.

Returns the favourited status.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0

Mastodon.status_unfavourite(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Un-favourite a status.

Returns the un-favourited status.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0

Mastodon.status_mute(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Mute notifications for a status.

Returns the now muted status

Added: Mastodon v1.4.0, last changed: Mastodon v2.0.0

Mastodon.status_unmute(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Unmute notifications for a status.

Returns the status that used to be muted.

Added: Mastodon v1.4.0, last changed: Mastodon v2.0.0

Mastodon.status_bookmark(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Bookmark a status as the logged-in user.

Returns the now bookmarked status

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

Mastodon.status_unbookmark(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Unbookmark a bookmarked status for the logged-in user.

Returns the status that used to be bookmarked.

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

Mastodon.status_delete(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Delete a status

Returns the now-deleted status, with an added “source” attribute that contains the text that was used to compose
this status (this can be used to power “delete and redraft” functionality)

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0

Mastodon.status_update(id: Status | str | int | MaybeSnowflakeIdType, status: str | None = None, spoiler_text:
str | None = None, sensitive: bool | None = None, media_ids: List[MediaAttachment |
str | int | MaybeSnowflakeIdType] | None = None, poll: Poll | str | int |
MaybeSnowflakeIdType | None = None)→ Status

Edit a status. The meanings of the fields are largely the same as in status_post(), though not every field can be
edited.

Note that editing a poll will reset the votes.

TODO: Currently doesn’t support editing media descriptions, implement that.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

32 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

4.5.2 Scheduled statuses

These functions allow you to get information about scheduled statuses and to update scheduled statuses that already
exist. To create new scheduled statuses, use status_post() with the scheduled_at parameter.

Reading

Mastodon.scheduled_statuses(max_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None,
min_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None,
since_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None,
limit: int | None = None)→ PaginatableList[ScheduledStatus]

Fetch a list of scheduled statuses

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0

Mastodon.scheduled_status(id: ScheduledStatus | str | int | MaybeSnowflakeIdType)→ ScheduledStatus
Fetch information about the scheduled status with the given id.

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0

Writing

Mastodon.scheduled_status_update(id: Status | str | int | MaybeSnowflakeIdType, scheduled_at: datetime)→
ScheduledStatus

Update the scheduled time of a scheduled status.

New time must be at least 5 minutes into the future.

Returned object reflects the updates to the scheduled status.

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0

Mastodon.scheduled_status_delete(id: Status | str | int | MaybeSnowflakeIdType)
Deletes a scheduled status.

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0

4.5.3 Media

This function allows you to upload media to Mastodon and update media uploads. The returned media IDs (Up to 4
at the same time on a default configuration Mastodon instance) can then be used with post_status to attach media to
statuses.

Mastodon.media_post(media_file: str | PurePath | IO[bytes], mime_type: str | None = None, description: str |
None = None, focus: Tuple[float, float] | None = None, file_name: str | None = None,
thumbnail: str | PurePath | IO[bytes] | None = None, thumbnail_mime_type: str | None =
None, synchronous: bool = False)→ MediaAttachment

Post an image, video or audio file. media_file can either be data or a file name. If data is passed directly, the
mime type has to be specified manually, otherwise, it is determined from the file name. focus should be a tuple
of floats between -1 and 1, giving the x and y coordinates of the images focus point for cropping (with the origin
being the images center).

Throws a MastodonIllegalArgumentError if the mime type of the passed data or file can not be determined
properly.

4.5. Statuses, media and polls 33

Mastodon.py Documentation, Release 1.8.1

file_name can be specified to upload a file with the given name, which is ignored by Mastodon, but some other
Fediverse server software will display it. If no name is specified, a random name will be generated. The filename
of a file specified in media_file will be ignored.

Starting with Mastodon 3.2.0, thumbnail can be specified in the same way as media_file to upload a custom
thumbnail image for audio and video files.

Returns a media dict. This contains the id that can be used in status_post to attach the media file to a toot.

When using the v2 API (post Mastodon version 3.1.4), the url in the returned dict will be null, since attachments
are processed asynchronously. You can fetch an updated dict using media. Pass “synchronous” to emulate the
old behaviour. Not recommended, inefficient and deprecated, will eat your API quota, you know the deal.

Added: Mastodon v1.0.0, last changed: Mastodon v3.2.0

Mastodon.media_update(id: MediaAttachment | str | int | MaybeSnowflakeIdType, description: str | None = None,
focus: Tuple[float, float] | None = None, thumbnail: str | PurePath | IO[bytes] | None =
None, thumbnail_mime_type=None)→ MediaAttachment

Update the metadata of the media file with the given id. description and focus and thumbnail are as in me-
dia_post() .

The returned dict reflects the updates to the media attachment.

Added: Mastodon v2.3.0, last changed: Mastodon v3.2.0

4.5.4 Polls

This function allows you to get and refresh information about polls as well as to vote in polls

Reading

Mastodon.poll(id: Poll | str | int | MaybeSnowflakeIdType)→ Poll
Fetch information about the poll with the given id

Added: Mastodon v2.8.0, last changed: Mastodon v2.8.0

Writing

Mastodon.poll_vote(id: Poll | str | int | MaybeSnowflakeIdType, choices: int | List[int])→ Poll
Vote in the given poll.

choices is the index of the choice you wish to register a vote for (i.e. its index in the corresponding polls options
field. In case of a poll that allows selection of more than one option, a list of indices can be passed.

You can only submit choices for any given poll once in case of single-option polls, or only once per option in
case of multi-option polls.

The returned object will reflect the updated votes.

Added: Mastodon v2.8.0, last changed: Mastodon v2.8.0

34 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

4.6 Accounts, relationships and lists

4.6.1 Accounts

These functions allow you to get information about accounts and associated data as well as update that data - profile
data (incuding pinned statuses and endorsements) for the logged in users account, and notes for everyone else

Reading

Mastodon.account_verify_credentials()→ Account
Fetch logged-in user’s account information. Returns the version of the Account object with source field.

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0

Mastodon.me()→ Account
Get this user’s account. Synonym for account_verify_credentials(), does exactly the same thing, just exists be-
cause account_verify_credentials() has a confusing name.

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0

Mastodon.account(id: Account | str | int | MaybeSnowflakeIdType)→ Account
Fetch account information by user id.

Does not require authentication for publicly visible accounts.

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0

Mastodon.account_search(q: str, limit: int | None = None, following: bool = False, resolve: bool = False, offset:
int | None = None)→ NonPaginatableList[Account]

Fetch matching accounts. Will lookup an account remotely if the search term is in the username@domain format
and not yet in the database. Set following to True to limit the search to users the logged-in user follows.

Paginated in a weird way (“limit” / “offset”), if you want to fetch all results here please do it yourself for now.

Added: Mastodon v1.0.0, last changed: Mastodon v2.8.0

Mastodon.account_lookup(acct: str)→ Account
Look up an account from user@instance form (@instance allowed but not required for local accounts). Will only
return accounts that the instance already knows about, and not do any webfinger requests. Use account_search
if you need to resolve users through webfinger from remote.

Added: Mastodon v3.4.0, last changed: Mastodon v3.4.0

Mastodon.featured_tags()→ NonPaginatableList[Tag]
Return the hashtags the logged-in user has set to be featured on their profile as a list of featured tag dicts.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.featured_tag_suggestions()→ NonPaginatableList[Tag]
Returns the logged-in user’s 10 most commonly-used hashtags.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.account_featured_tags(id: Account | str | int | MaybeSnowflakeIdType)→ NonPaginatableList[Tag]
Get an account’s featured hashtags.

Added: Mastodon v3.3.0, last changed: Mastodon v3.3.0

4.6. Accounts, relationships and lists 35

mailto:username@domain
mailto:user@instance

Mastodon.py Documentation, Release 1.8.1

Mastodon.endorsements()→ NonPaginatableList[Account]
Fetch list of users endorsed by the logged-in user.

Added: Mastodon v2.5.0, last changed: Mastodon v2.5.0

Mastodon.account_statuses(id: Account | str | int | MaybeSnowflakeIdType, only_media: bool = False, pinned:
bool = False, exclude_replies: bool = False, exclude_reblogs: bool = False,
tagged: str | None = None, max_id: Status | str | int | MaybeSnowflakeIdType |
datetime | None = None, min_id: Status | str | int | MaybeSnowflakeIdType |
datetime | None = None, since_id: Status | str | int | MaybeSnowflakeIdType |
datetime | None = None, limit: int | None = None)→ PaginatableList[Status]

Fetch statuses by user id. Same options as timeline() are permitted. Returned toots are from the perspective of
the logged-in user, i.e. all statuses visible to the logged-in user (including DMs) are included.

If only_media is set, return only statuses with media attachments. If pinned is set, return only statuses that have
been pinned. Note that as of Mastodon 2.1.0, this only works properly for instance-local users. If exclude_replies
is set, filter out all statuses that are replies. If exclude_reblogs is set, filter out all statuses that are reblogs. If
tagged is set, return only statuses that are tagged with tagged. Only a single tag without a ‘#’ is valid.

Does not require authentication for Mastodon versions after 2.7.0 (returns publicly visible statuses in that case),
for publicly visible accounts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.8.0

Mastodon.account_familiar_followers(id: List[Account | str | int | MaybeSnowflakeIdType] | Account | str |
int | MaybeSnowflakeIdType)→
NonPaginatableList[FamiliarFollowers]

Find followers for the account given by id (can be a list) that also follow the logged in account.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.account_lists(id: Account | str | int | MaybeSnowflakeIdType)→ NonPaginatableList[UserList]
Get all of the logged-in user’s lists which the specified user is a member of.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Writing

Mastodon.account_update_credentials(display_name: str | None = None, note: str | None = None, avatar: str
| PurePath | IO[bytes] | None = None, avatar_mime_type: str | None
= None, header: str | PurePath | IO[bytes] | None = None,
header_mime_type: str | None = None, locked: bool | None = None,
bot: bool | None = None, discoverable: bool | None = None, fields:
List[Tuple[str, str]] | None = None)→ Account

Update the profile for the currently logged-in user.

note is the user’s bio.

avatar and ‘header’ are images. As with media uploads, it is possible to either pass image data and a mime type,
or a filename of an image file, for either.

locked specifies whether the user needs to manually approve follow requests.

bot specifies whether the user should be set to a bot.

discoverable specifies whether the user should appear in the user directory.

fields can be a list of up to four name-value pairs (specified as tuples) to appear as semi-structured information
in the user’s profile.

36 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

The returned object reflects the updated account.

Added: Mastodon v1.1.1, last changed: Mastodon v3.1.0

Mastodon.account_pin(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Pin / endorse a user.

The returned object reflects the updated relationship with the user.

Added: Mastodon v2.5.0, last changed: Mastodon v2.5.0

Mastodon.account_unpin(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Unpin / un-endorse a user.

The returned object reflects the updated relationship with the user.

Added: Mastodon v2.5.0, last changed: Mastodon v2.5.0

Mastodon.account_note_set(id: Account | str | int | MaybeSnowflakeIdType, comment: str)→ Account
Set a note (visible to the logged in user only) for the given account.

The returned object contains the updated note.

Added: Mastodon v3.2.0, last changed: Mastodon v3.2.0

Mastodon.featured_tag_create(name: str)→ FeaturedTag
Creates a new featured hashtag displayed on the logged-in user’s profile.

The returned object is the newly featured tag.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.featured_tag_delete(id: FeaturedTag | str | int | MaybeSnowflakeIdType)
Deletes one of the logged-in user’s featured hashtags.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.status_pin(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Pin a status for the logged-in user.

Returns the now pinned status

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.status_unpin(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Unpin a pinned status for the logged-in user.

Returns the status that used to be pinned.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

4.6.2 Following and followers

These functions allow you to get information about the logged in users followers and users that the logged in users
follows as well as follow requests and follow suggestions, and to manage that data - most importantly, follow and
unfollow users.

4.6. Accounts, relationships and lists 37

Mastodon.py Documentation, Release 1.8.1

Reading

Mastodon.account_followers(id: Account | str | int | MaybeSnowflakeIdType, max_id: Account | str | int |
MaybeSnowflakeIdType | None = None, min_id: Account | str | int |
MaybeSnowflakeIdType | None = None, since_id: Account | str | int |
MaybeSnowflakeIdType | None = None, limit: int | None = None)→
PaginatableList[Account]

Fetch users the given user is followed by.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0

Mastodon.account_following(id: Account | str | int | MaybeSnowflakeIdType, max_id: Account | str | int |
MaybeSnowflakeIdType | None = None, min_id: Account | str | int |
MaybeSnowflakeIdType | None = None, since_id: Account | str | int |
MaybeSnowflakeIdType | None = None, limit: int | None = None)→
PaginatableList[Account]

Fetch users the given user is following.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0

Mastodon.account_relationships(id: List[Account | str | int | MaybeSnowflakeIdType] | Account | str | int |
MaybeSnowflakeIdType)→ NonPaginatableList[Relationship]

Fetch relationship (following, followed_by, blocking, follow requested) of the logged in user to a given account.
id can be a list.

Added: Mastodon v1.0.0, last changed: Mastodon v1.4.0

Mastodon.follows(uri: str)→ Relationship
Follow a remote user with username given in username@domain form.

Returns a account dict.

Deprecated - avoid using this. Currently uses a backwards compat implementation that may or may not work
properly.

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0

Mastodon.follow_requests(max_id: str | int | MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int | MaybeSnowflakeIdType |
None = None, limit: int | None = None)→ PaginatableList[Account]

Fetch the logged-in user’s incoming follow requests.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0

Mastodon.suggestions()→ NonPaginatableList[Account]
Fetch follow suggestions for the logged-in user.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

38 Chapter 4. Research use and citing

mailto:username@domain

Mastodon.py Documentation, Release 1.8.1

Writing

Mastodon.account_follow(id: Account | str | int | MaybeSnowflakeIdType, reblogs: bool = True, notify: bool =
False)→ Relationship

Follow a user.

Set reblogs to False to hide boosts by the followed user. Set notify to True to get a notification every time the
followed user posts.

The returned object reflects the updated relationship with the user.

Added: Mastodon v1.0.0, last changed: Mastodon v3.3.0

Mastodon.account_unfollow(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Unfollow a user.

The returned object reflects the updated relationship with the user.

Added: Mastodon v1.0.0, last changed: Mastodon v1.4.0

Mastodon.follow_request_authorize(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Accept an incoming follow request from the given Account and returns the updated Relationship.

Added: Mastodon v1.0.0, last changed: Mastodon v3.0.0

Mastodon.follow_request_reject(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Reject an incoming follow request from the given Account and returns the updated Relationship.

Added: Mastodon v1.0.0, last changed: Mastodon v3.0.0

Mastodon.suggestion_delete(account_id: Account | str | int | MaybeSnowflakeIdType)
Remove the user with the given account_id from the follow suggestions.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

4.6.3 Mutes and blocks

These functions allow you to get information about accounts and domains that are muted or blocked by the logged in
user, and to block and mute users and domains

Reading

Mastodon.mutes(max_id: str | int | MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int | MaybeSnowflakeIdType | None =
None, limit: int | None = None)→ PaginatableList[Account]

Fetch a list of users muted by the logged-in user.

Added: Mastodon v1.1.0, last changed: Mastodon v2.6.0

Mastodon.blocks(max_id: str | int | MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int | MaybeSnowflakeIdType | None =
None, limit: int | None = None)→ PaginatableList[Account]

Fetch a list of users blocked by the logged-in user.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0

4.6. Accounts, relationships and lists 39

Mastodon.py Documentation, Release 1.8.1

Mastodon.domain_blocks(max_id: str | int | MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int | MaybeSnowflakeIdType |
None = None, limit: int | None = None)→ PaginatableList[str]

Fetch the logged-in user’s blocked domains.

Returns a list of blocked domain URLs (as strings, without protocol specifier).

Added: Mastodon v1.4.0, last changed: Mastodon v2.6.0

Writing

Mastodon.account_mute(id: Account | str | int | MaybeSnowflakeIdType, notifications: bool = True, duration: int
| None = None)→ Relationship

Mute a user.

Set notifications to False to receive notifications even though the user is muted from timelines. Pass a duration
in seconds to have Mastodon automatically lift the mute after that many seconds.

The returned object reflects the updated relationship with the user.

Added: Mastodon v1.1.0, last changed: Mastodon v2.4.3

Mastodon.account_unmute(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Unmute a user.

The returned object reflects the updated relationship with the user.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.0

Mastodon.account_block(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Block a user.

The returned object reflects the updated relationship with the user.

Added: Mastodon v1.0.0, last changed: Mastodon v1.4.0

Mastodon.account_unblock(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Unblock a user.

The returned object reflects the updated relationship with the user.

Added: Mastodon v1.0.0, last changed: Mastodon v1.4.0

Mastodon.account_remove_from_followers(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Remove a user from the logged in users followers (i.e. make them unfollow the logged in user / “softblock”
them).

The returned object reflects the updated relationship with the user.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.domain_block(domain: str)
Add a block for all statuses originating from the specified domain for the logged-in user.

Added: Mastodon v1.4.0, last changed: Mastodon v1.4.0

Mastodon.domain_unblock(domain: str)
Remove a domain block for the logged-in user.

Added: Mastodon v1.4.0, last changed: Mastodon v1.4.0

40 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

4.6.4 Lists

These functions allow you to view information about lists as well as to create and update them. By default, the maximum
number of lists for a user is 50.

Reading

Mastodon.lists()→ NonPaginatableList[UserList]
Fetch a list of all the Lists by the logged-in user.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.list(id: UserList | str | int | MaybeSnowflakeIdType)→ UserList
Fetch info about a specific list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.list_accounts(id: UserList | str | int | MaybeSnowflakeIdType, max_id: UserList | str | int |
MaybeSnowflakeIdType | None = None, min_id: UserList | str | int |
MaybeSnowflakeIdType | None = None, since_id: UserList | str | int |
MaybeSnowflakeIdType | None = None, limit: int | None = None)→
PaginatableList[Account]

Get the accounts that are on the given list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.6.0

Writing

Mastodon.list_create(title: str)→ UserList
Create a new list with the given title.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.list_update(id: UserList | str | int | MaybeSnowflakeIdType, title: str)→ UserList
Update info about a list, where “info” is really the lists title.

The returned object reflects the updated list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.list_delete(id: UserList | str | int | MaybeSnowflakeIdType)
Delete a list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.list_accounts_add(id: UserList | str | int | MaybeSnowflakeIdType, account_ids: List[Account | str |
int | MaybeSnowflakeIdType])

Add the account(s) given in account_ids to the list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.list_accounts_delete(id: UserList | str | int | MaybeSnowflakeIdType, account_ids: List[Account |
str | int | MaybeSnowflakeIdType])

Remove the account(s) given in account_ids from the list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

4.6. Accounts, relationships and lists 41

Mastodon.py Documentation, Release 1.8.1

4.7 Reading data: Timelines

These functions allow you to access the timelines a logged in user could see, as well as hashtag timelines and the
public (federated) and local timelines. For the public, local and hashtag timelines, access is allowed even when not
authenticated if the instance admin has enabled this functionality.

Mastodon.timeline(timeline: str = 'home', max_id: Status | str | int | MaybeSnowflakeIdType | datetime | None =
None, min_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None, since_id:
Status | str | int | MaybeSnowflakeIdType | datetime | None = None, limit: int | None = None,
only_media: bool = False, local: bool = False, remote: bool = False)→
PaginatableList[Status]

Fetch statuses, most recent ones first. timeline can be ‘home’, ‘local’, ‘public’, ‘tag/hashtag’ or ‘list/id’. See the
following functions documentation for what those do.

The default timeline is the “home” timeline.

Specify only_media to only get posts with attached media. Specify local to only get local statuses, and remote
to only get remote statuses. Some options are mutually incompatible as dictated by logic.

May or may not require authentication depending on server settings and what is specifically requested.

Added: Mastodon v1.0.0, last changed: Mastodon v3.1.4

Mastodon.timeline_home(max_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None, min_id:
Status | str | int | MaybeSnowflakeIdType | datetime | None = None, since_id: Status |
str | int | MaybeSnowflakeIdType | datetime | None = None, limit: int | None = None,
only_media: bool = False, local: bool = False, remote: bool = False)→
PaginatableList[Status]

Convenience method: Fetches the logged-in user’s home timeline (i.e. followed users and self). Params as in
timeline().

Added: Mastodon v1.0.0, last changed: Mastodon v3.1.4

Mastodon.timeline_local(max_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None, min_id:
Status | str | int | MaybeSnowflakeIdType | datetime | None = None, since_id: Status |
str | int | MaybeSnowflakeIdType | datetime | None = None, limit: int | None = None,
only_media: bool = False)→ PaginatableList[Status]

Convenience method: Fetches the local / instance-wide timeline, not including replies. Params as in timeline().

Added: Mastodon v1.0.0, last changed: Mastodon v3.1.4

Mastodon.timeline_public(max_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None, min_id:
Status | str | int | MaybeSnowflakeIdType | datetime | None = None, since_id: Status
| str | int | MaybeSnowflakeIdType | datetime | None = None, limit: int | None =
None, only_media: bool = False, local: bool = False, remote: bool = False)→
PaginatableList[Status]

Convenience method: Fetches the public / visible-network / federated timeline, not including replies. Params as
in timeline().

Added: Mastodon v1.0.0, last changed: Mastodon v3.1.4

Mastodon.timeline_hashtag(hashtag: str, local: bool = False, max_id: Status | str | int |
MaybeSnowflakeIdType | datetime | None = None, min_id: Status | str | int |
MaybeSnowflakeIdType | datetime | None = None, since_id: Status | str | int |
MaybeSnowflakeIdType | datetime | None = None, limit: int | None = None,
only_media: bool = False, remote: bool = False)→ PaginatableList[Status]

Convenience method: Fetch a timeline of toots with a given hashtag. The hashtag parameter should not contain
the leading #. Params as in timeline().

42 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Added: Mastodon v1.0.0, last changed: Mastodon v3.1.4

Mastodon.timeline_list(id: UserList | str | int | MaybeSnowflakeIdType, max_id: Status | str | int |
MaybeSnowflakeIdType | datetime | None = None, min_id: Status | str | int |
MaybeSnowflakeIdType | datetime | None = None, since_id: Status | str | int |
MaybeSnowflakeIdType | datetime | None = None, limit: int | None = None,
only_media: bool = False, local: bool = False, remote: bool = False)→
PaginatableList[Status]

Convenience method: Fetches a timeline containing all the toots by users in a given list. Params as in timeline().

Added: Mastodon v2.1.0, last changed: Mastodon v3.1.4

Mastodon.conversations(max_id: Conversation | str | int | MaybeSnowflakeIdType | None = None, min_id:
Conversation | str | int | MaybeSnowflakeIdType | None = None, since_id:
Conversation | str | int | MaybeSnowflakeIdType | None = None, limit: int | None =
None)→ PaginatableList[Conversation]

Fetches a user’s conversations.

Added: Mastodon v2.6.0, last changed: Mastodon v2.6.0

4.8 Instance-wide data and search

4.8.1 Instance information

These functions allow you to fetch information associated with the current instance as well as data from the instance-
wide profile directory.

Mastodon.instance()→ Instance | InstanceV2
Retrieve basic information about the instance, including the URI and administrative contact email.

Does not require authentication unless locked down by the administrator.

Returns an instance dict.

Added: Mastodon v1.1.0, last changed: Mastodon v4.0.0

Mastodon.instance_activity()→ NonPaginatableList[Activity]
Retrieve activity stats about the instance. May be disabled by the instance administrator - throws a Mastodon-
NotFoundError in that case.

Activity is returned for 12 weeks going back from the current week.

Added: Mastodon v2.1.2, last changed: Mastodon v2.1.2

Mastodon.instance_peers()→ NonPaginatableList[str]
Retrieve the instances that this instance knows about. May be disabled by the instance administrator - throws a
MastodonNotFoundError in that case.

Returns a list of URL strings.

Added: Mastodon v2.1.2, last changed: Mastodon v2.1.2

Mastodon.instance_health()→ bool
Basic health check. Returns True if healthy, False if not.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

4.8. Instance-wide data and search 43

Mastodon.py Documentation, Release 1.8.1

Mastodon.instance_nodeinfo(schema: str = 'http://nodeinfo.diaspora.software/ns/schema/2.0')→ Nodeinfo |
AttribAccessDict

Retrieves the instance’s nodeinfo information.

For information on what the nodeinfo can contain, see the nodeinfo specification: https://github.com/jhass/
nodeinfo . By default, Mastodon.py will try to retrieve the version 2.0 schema nodeinfo, for which we have
a well defined return object. If you go outside of that, all bets are off.

To override the schema, specify the desired schema with the schema parameter.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.instance_rules()→ NonPaginatableList[Rule]
Retrieve instance rules.

Added: Mastodon v3.4.0, last changed: Mastodon v3.4.0

Profile directory

Mastodon.directory(offset: int | None = None, limit: int | None = None, order: str | None = None, local: bool |
None = None)→ NonPaginatableList[Account]

Fetch the contents of the profile directory, if enabled on the server.

offset how many accounts to skip before returning results. Default 0.

limit how many accounts to load. Default 40.

order “active” to sort by most recently posted statuses (usually the default) or
“new” to sort by most recently created profiles.

local True to return only local accounts.

Uses offset/limit pagination, not currently handled by the pagination utility functions, do it manually if you have
to.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Emoji

Mastodon.custom_emojis()→ NonPaginatableList[CustomEmoji]
Fetch the list of custom emoji the instance has installed.

Does not require authentication unless locked down by the administrator.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

4.8.2 Announcements

These functions allow you to fetch announcements, mark annoucements read and modify reactions.

44 Chapter 4. Research use and citing

https://github.com/jhass/nodeinfo
https://github.com/jhass/nodeinfo

Mastodon.py Documentation, Release 1.8.1

Reading

Mastodon.announcements()→ NonPaginatableList[Announcement]
Fetch currently active announcements.

Returns a list of announcement dicts.

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

Writing

Mastodon.announcement_dismiss(id: Announcement | str | int | MaybeSnowflakeIdType)
Set the given annoucement to read.

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

Mastodon.announcement_reaction_create(id: Announcement | str | int | MaybeSnowflakeIdType, reaction:
str)

Add a reaction to an announcement. reaction can either be a unicode emoji or the name of one of the instances
custom emoji.

Will throw an API error if the reaction name is not one of the allowed things or when trying to add a reaction
that the user has already added (adding a reaction that a different user added is legal and increments the count).

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

Mastodon.announcement_reaction_delete(id: Announcement | str | int | MaybeSnowflakeIdType, reaction:
str)

Remove a reaction to an announcement.

Will throw an API error if the reaction does not exist.

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

4.8.3 Trends

These functions, when enabled, allow you to fetch trending tags, statuses and links.

Mastodon.trending_tags(limit: int | None = None, lang: str | None = None)→ NonPaginatableList[Tag]
Fetch trending-hashtag information, if the instance provides such information.

Specify limit to limit how many results are returned (the maximum number of results is 10, the endpoint is not
paginated).

Does not require authentication unless locked down by the administrator.

Important versioning note: This endpoint does not exist for Mastodon versions between 2.8.0 (inclusive) and
3.0.0 (exclusive).

Pass lang to override the global locale parameter, which may affect trend ordering.

The results are sorted by the instances’s trending algorithm, descending.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

4.8. Instance-wide data and search 45

Mastodon.py Documentation, Release 1.8.1

Mastodon.trending_statuses(limit: int | None = None, offset: int | None = None, lang: str | None = None)→
NonPaginatableList[Status]

Fetch trending-status information, if the instance provides such information.

Specify limit to limit how many results are returned (default 20, the maximum number of results is 40).

Specify offset to paginate results. Default 0.

Pass lang to override the global locale parameter, which may affect trend ordering.

The results are sorted by the instances’s trending algorithm, descending.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.trending_links(limit: int | None = None, lang: str | None = None)→
NonPaginatableList[PreviewCard]

Fetch trending-link information, if the instance provides such information.

Specify limit to limit how many results are returned (the maximum number of results is 10, the endpoint is not
paginated).

The results are sorted by the instances’s trending algorithm, descending.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.trends(limit: int | None = None)
Old alias for trending_tags()

Deprecated. Please use trending_tags() instead.

Added: Mastodon v2.4.3, last changed: Mastodon v3.5.0

4.8.4 Search

These functions allow you to search for users, tags and, when enabled, full text, by default within your own posts and
those you have interacted with.

Mastodon.search(q: str, resolve: bool = True, result_type: str | None = None, account_id: Account | str | int |
MaybeSnowflakeIdType | None = None, offset: int | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, max_id: str | int | MaybeSnowflakeIdType | None =
None, exclude_unreviewed: bool = True)→ Search | SearchV2

Fetch matching hashtags, accounts and statuses. Will perform webfinger lookups if resolve is True. Full-text
search is only enabled if the instance supports it, and is restricted to statuses the logged-in user wrote or was
mentioned in.

result_type can be one of “accounts”, “hashtags” or “statuses”, to only search for that type of object.

Specify account_id to only get results from the account with that id.

offset, min_id and max_id can be used to paginate.

exclude_unreviewed can be used to restrict search results for hashtags to only those that have been reviewed by
moderators. It is on by default. When using the v1 search API (pre 2.4.1), it is ignored.

Will use search_v1 (no tag dicts in return values) on Mastodon versions before 2.4.1), search_v2 otherwise. Pa-
rameters other than resolve are only available on Mastodon 2.8.0 or above - this function will throw a Mastodon-
VersionError if you try to use them on versions before that. Note that the cached version number will be used for
this to avoid uneccesary requests.

Added: Mastodon v1.1.0, last changed: Mastodon v2.8.0

46 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Mastodon.search_v2(q, resolve: bool = True, result_type: str | None = None, account_id: Account | str | int |
MaybeSnowflakeIdType | None = None, offset: int | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, max_id: str | int | MaybeSnowflakeIdType | None =
None, exclude_unreviewed: bool = True)→ SearchV2

Identical to search_v1(), except in that it returns tags as hashtag dicts, has more parameters, and resolves by
default.

For more details documentation, please see search()

Returns a search result dict.

Added: Mastodon v2.4.1, last changed: Mastodon v2.8.0

4.9 Notifications and filtering

4.9.1 Notifications

This function allows you to get information about a user’s notifications as well as to clear all or some notifications and
to mark conversations as read.

Reading

Mastodon.notifications(id: Notification | str | int | MaybeSnowflakeIdType | None = None, account_id: Account
| str | int | MaybeSnowflakeIdType | None = None, max_id: Notification | str | int |
MaybeSnowflakeIdType | None = None, min_id: Notification | str | int |
MaybeSnowflakeIdType | None = None, since_id: Notification | str | int |
MaybeSnowflakeIdType | None = None, limit: int | None = None, exclude_types:
List[str] | None = None, types: List[str] | None = None, mentions_only: bool | None =
None)→ PaginatableList[Notification]

Fetch notifications (mentions, favourites, reblogs, follows) for the logged-in user. Pass account_id to get only
notifications originating from the given account.

There are different types of notifications:
• follow - A user followed the logged in user

• follow_request - A user has requested to follow the logged in user (for locked accounts)

• favourite - A user favourited a post by the logged in user

• reblog - A user reblogged a post by the logged in user

• mention - A user mentioned the logged in user

• poll - A poll the logged in user created or voted in has ended

• update - A status the logged in user has reblogged (and only those, as of 4.0.0) has been edited

• status - A user that the logged in user has enabned notifications for has enabled notify (see ac-
count_follow())

• admin.sign_up - For accounts with appropriate permissions (TODO: document which those are when
adding the permission API): A new user has signed up

• admin.report - For accounts with appropriate permissions (TODO: document which those are when
adding the permission API): A new report has been received

4.9. Notifications and filtering 47

Mastodon.py Documentation, Release 1.8.1

Parameters exclude_types and types are array of these types, specifying them will in- or exclude the types of
notifications given. It is legal to give both parameters at the same tine, the result will then be the intersection of
the results of both filters. Specifying mentions_only is a deprecated way to set exclude_types to all but mentions.

Can be passed an id to fetch a single notification.

Returns a list of notification dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v3.5.0

Writing

Mastodon.notifications_clear()

Clear out a user’s notifications

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0

Mastodon.notifications_dismiss(id: Notification | str | int | MaybeSnowflakeIdType)
Deletes a single notification

Added: Mastodon v1.3.0, last changed: Mastodon v2.9.2

Mastodon.conversations_read(id: Conversation | str | int | MaybeSnowflakeIdType)
Marks a single conversation as read.

The returned object reflects the conversation’s new read status.

Added: Mastodon v2.6.0, last changed: Mastodon v2.6.0

4.9.2 Keyword filters

These functions allow you to get information about keyword filters as well as to create and update filters.

Very Important Note: The filtering system was revised in 4.0.0. This means that these functions will now not
work anymore if an instance is on Mastodon 4.0.0 or above. When updating Mastodon.py for 4.0.0, we’ll make
an effort to emulate old behaviour, but this will not always be possible. Consider these methods deprecated, for
now.

Reading

Mastodon.filters()

Fetch all of the logged-in user’s filters.

Returns a list of filter dicts. Not paginated.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

Mastodon.filter(id)
Fetches information about the filter with the specified id.

Returns a filter dict.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

48 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Mastodon.filters_apply(objects, filters, context)
Helper function: Applies a list of filters to a list of either statuses or notifications and returns only those matched
by none. This function will apply all filters that match the context provided in context, i.e. if you want to apply
only notification-relevant filters, specify ‘notifications’. Valid contexts are ‘home’, ‘notifications’, ‘public’ and
‘thread’.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

Writing

Mastodon.filter_create(phrase, context, irreversible=False, whole_word=True, expires_in=None)
Creates a new keyword filter. phrase is the phrase that should be filtered out, context specifies from where to
filter the keywords. Valid contexts are ‘home’, ‘notifications’, ‘public’ and ‘thread’.

Set irreversible to True if you want the filter to just delete statuses server side. This works only for the ‘home’
and ‘notifications’ contexts.

Set whole_word to False if you want to allow filter matches to start or end within a word, not only at word
boundaries.

Set expires_in to specify for how many seconds the filter should be kept around.

Returns the filter dict of the newly created filter.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

Mastodon.filter_update(id, phrase=None, context=None, irreversible=None, whole_word=None,
expires_in=None)

Updates the filter with the given id. Parameters are the same as in filter_create().

Returns the filter dict of the updated filter.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

Mastodon.filter_delete(id)
Deletes the filter with the given id.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

4.9.3 Push notifications

Mastodon supports the delivery of notifications via webpush.

These functions allow you to manage webpush subscriptions and to decrypt received pushes. Note that the intended
setup is not Mastodon pushing directly to a user’s client - the push endpoint should usually be a relay server that then
takes care of delivering the (encrypted) push to the end user via some mechanism, where it can then be decrypted and
displayed.

Mastodon allows an application to have one webpush subscription per user at a time.

All crypto utilities require Mastodon.py’s optional “webpush” feature dependencies (specifically, the “cryptography”
and “http_ece” packages).

Mastodon.push_subscription()→ WebPushSubscription
Fetch the current push subscription the logged-in user has for this app.

Only one webpush subscription can be active at a time for any given app.

Added: Mastodon v2.4.0, last changed: Mastodon v2.4.0

4.9. Notifications and filtering 49

Mastodon.py Documentation, Release 1.8.1

Mastodon.push_subscription_set(endpoint: str, encrypt_params: Dict[str, str], follow_events: bool | None =
None, favourite_events: bool | None = None, reblog_events: bool | None =
None, mention_events: bool | None = None, poll_events: bool | None =
None, follow_request_events: bool | None = None, status_events: bool |
None = None, policy: str = 'all', update_events: bool | None = None,
admin_sign_up_events: bool | None = None, admin_report_events: bool |
None = None)→ WebPushSubscription

Sets up or modifies the push subscription the logged-in user has for this app.

endpoint is the endpoint URL mastodon should call for pushes. Note that mastodon requires https for this
URL. encrypt_params is a dict with key parameters that allow the server to encrypt data for you: A public
key pubkey and a shared secret auth. You can generate this as well as the corresponding private key using the
push_subscription_generate_keys() function.

policy controls what sources will generate webpush events. Valid values are all, none, follower and followed.

The rest of the parameters controls what kind of events you wish to subscribe to. Events whose names start with
“admin” require admin privileges to subscribe to.

• follow_events controls whether you receive events when someone follows the logged in user.

• favourite_events controls whether you receive events when someone favourites one of the logged in users
statuses.

• reblog_events controls whether you receive events when someone boosts one of the logged in users statuses.

• mention_events controls whether you receive events when someone mentions the logged in user in a status.

• poll_events controls whether you receive events when a poll the logged in user has voted in has ended.

• follow_request_events controls whether you receive events when someone requests to follow the logged in
user.

• status_events controls whether you receive events when someone the logged in user has subscribed to
notifications for posts a new status.

• update_events controls whether you receive events when a status that the logged in user has boosted has
been edited.

• admin_sign_up_events controls whether you receive events when a new user signs up.

• admin_report_events controls whether you receive events when a new report is received.

Returns a push subscription dict.

Added: Mastodon v2.4.0, last changed: Mastodon v4..0

Mastodon.push_subscription_update(follow_events: bool | None = None, favourite_events: bool | None =
None, reblog_events: bool | None = None, mention_events: bool | None
= None, poll_events: bool | None = None, follow_request_events: bool |
None = None, status_events: bool | None = None, policy: str | None =
'all', update_events: bool | None = None, admin_sign_up_events: bool |
None = None, admin_report_events: bool | None = None)→
WebPushSubscription

Modifies what kind of events the app wishes to subscribe to.

Parameters are as in push_subscription_create().

Returned object reflects the updated push subscription.

Added: Mastodon v2.4.0, last changed: Mastodon v2.4.0

50 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Mastodon.push_subscription_generate_keys()→ Tuple[Dict[str, str], Dict[str, str]]
Generates a private key, public key and shared secret for use in webpush subscriptions.

Returns two dicts: One with the private key and shared secret and another with the public key and shared secret.

Mastodon.push_subscription_decrypt_push(data: bytes, decrypt_params: Dict[str, str], encryption_header:
str, crypto_key_header: str)→ PushNotification

Decrypts data received in a webpush request. Requires the private key dict from
push_subscription_generate_keys() (decrypt_params) as well as the Encryption and server Crypto-Key
headers from the received webpush

Added: Mastodon v2.4.0, last changed: Mastodon v2.4.0

Usage example

This is a minimal usage example for the push API, including a small http server to receive webpush notifications.

api = Mastodon(...)
keys = api.push_subscription_generate_keys()
api.push_subscription_set(endpoint, keys[1], mention_events=1)

class Handler(http.server.BaseHTTPRequestHandler):
def do_POST(self):

self.send_response(201)
self.send_header('Location', '') # Mastodon doesn't seem to care about this
self.end_headers()
data = self.rfile.read(int(self.headers['content-length']))
np = api.push_subscription_decrypt_push(data, keys[0], self.headers['Encryption

→˓'], self.headers['Crypto-Key'])
n = api.notifications(id=np.notification_id)
s = n.status
self.log_message('\nFrom: %s\n%s', s.account.acct, s.content)

httpd = http.server.HTTPServer(('', 42069), Handler)

try:
httpd.serve_forever()

except KeyboardInterrupt:
pass

finally:
httpd.server_close()
api.push_subscription_delete()

4.10 Streaming

These functions allow access to the streaming API. Since Mastodon v4.2.0 the support for anonymous streaming api
access was dropped. You need to generate an access token now.

If run_async is False, these methods block forever (or until an error is encountered).

If run_async is True, the listener will listen on another thread and these methods will return a handle corresponding
to the open connection. If, in addition, reconnect_async is True, the thread will attempt to reconnect to the streaming
API if any errors are encountered, waiting reconnect_async_wait_sec seconds between reconnection attempts. Note
that no effort is made to “catch up” - events created while the connection is broken will not be received. If you need to

4.10. Streaming 51

Mastodon.py Documentation, Release 1.8.1

make sure to get absolutely all notifications / deletes / toots, you will have to do that manually, e.g. using the on_abort
handler to fill in events since the last received one and then reconnecting. Both run_async and reconnect_async default
to false, and you’ll have to set each to true separately to get the behaviour described above.

The connection may be closed at any time by calling the handles close() method. The current status of the handler thread
can be checked with the handles is_alive() function, and the streaming status can be checked by calling is_receiving().

The streaming functions take instances of StreamListener as the listener parameter. A CallbackStreamListener class
that allows you to specify function callbacks directly is included for convenience.

For new well-known events implement the streaming function in StreamListener or CallbackStreamListener. The func-
tion name is on_ + the event name. If the event name contains dots, they are replaced with underscored, e.g. for an
event called ‘status.update’ the listener function should be named on_status_update.

It may be that future Mastodon versions will come with completely new (unknown) event names. If you want to do
something when such an event is received, override the listener function on_unknown_event. This has an additional
parameter name which informs about the name of the event. unknown_event contains the content of the event. Alter-
natively, a callback function can be passed in the unknown_event_handler parameter in the CallbackStreamListener
constructor.

Note that the unknown_event handler is not guaranteed to receive events once they have been implemented. Events
will only go to this handler temporarily, while Mastodon.py has not been updated. Changes to what events do and do
not go into the handler will not be considered a breaking change. If you want to handle a new event whose name you
do know, define an appropriate handler in your StreamListener, which will work even if it is not listed here.

When in not-async mode or async mode without async_reconnect, the stream functions may raise various exceptions:
MastodonMalformedEventError if a received event cannot be parsed and MastodonNetworkError if any connection
problems occur.

Mastodon.py currently does not support websocket based, multiplexed streams, but might in the future.

4.10.1 Stream endpoints

Mastodon.stream_user(listener, run_async=False, timeout=300, reconnect_async=False,
reconnect_async_wait_sec=5)

Streams events that are relevant to the authorized user, i.e. home timeline and notifications.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.2

Mastodon.stream_public(listener, run_async=False, timeout=300, reconnect_async=False,
reconnect_async_wait_sec=5, local=False, remote=False)

Streams public events.

Set local to True to only get local statuses. Set remote to True to only get remote statuses.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.2

Mastodon.stream_local(listener, run_async=False, timeout=300, reconnect_async=False,
reconnect_async_wait_sec=5)

Streams local public events.

This function is deprecated. Please use stream_public() with parameter local set to True instead.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.2

Mastodon.stream_hashtag(tag, listener, local=False, run_async=False, timeout=300, reconnect_async=False,
reconnect_async_wait_sec=5)

Stream for all public statuses for the hashtag ‘tag’ seen by the connected instance.

Set local to True to only get local statuses.

52 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.2

Mastodon.stream_list(id, listener, run_async=False, timeout=300, reconnect_async=False,
reconnect_async_wait_sec=5)

Stream events for the current user, restricted to accounts on the given list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.stream_healthy()→ bool
Returns without True if streaming API is okay, False or raises an error otherwise.

Added: Mastodon v2.5.0, last changed: Mastodon v2.5.0

4.10.2 StreamListener

class mastodon.StreamListener

Callbacks for the streaming API. Create a subclass, override the on_xxx methods for the kinds of events you’re
interested in, then pass an instance of your subclass to Mastodon.user_stream(), Mastodon.public_stream(), or
Mastodon.hashtag_stream().

StreamListener.on_update(status)
A new status has appeared. status is the parsed status dict describing the status.

StreamListener.on_notification(notification)
A new notification. notification is the parsed notification dict describing the notification.

StreamListener.on_delete(status_id)
A status has been deleted. status_id is the status’ integer ID.

StreamListener.on_conversation(conversation)
A direct message (in the direct stream) has been received. conversation is the parsed conversation dict dictionary
describing the conversation

StreamListener.on_status_update(status)
A status has been edited. ‘status’ is the parsed JSON dictionary describing the updated status.

StreamListener.on_unknown_event(name, unknown_event=None)
An unknown mastodon API event has been received. The name contains the event-name and unknown_event
contains the content of the unknown event.

StreamListener.on_abort(err)
There was a connection error, read timeout or other error fatal to the streaming connection. The exception object
about to be raised is passed to this function for reference.

Note that the exception will be raised properly once you return from this function, so if you are using this handler
to reconnect, either never return or start a thread and then catch and ignore the exception.

StreamListener.handle_heartbeat()

The server has sent us a keep-alive message. This callback may be useful to carry out periodic housekeeping
tasks, or just to confirm that the connection is still open.

4.10. Streaming 53

Mastodon.py Documentation, Release 1.8.1

CallbackStreamListener

class mastodon.CallbackStreamListener(update_handler=None, local_update_handler=None,
delete_handler=None, notification_handler=None,
conversation_handler=None, unknown_event_handler=None,
status_update_handler=None, filters_changed_handler=None,
announcement_handler=None,
announcement_reaction_handler=None,
announcement_delete_handler=None,
encryted_message_handler=None)

Simple callback stream handler class. Can optionally additionally send local update events to a separate handler.
Define an unknown_event_handler for new Mastodon API events. This handler is not guaranteed to receive these
events forever, and should only be used for diagnostics.

4.11 Misc: Markers, reports

4.11.1 Markers

These functions allow you to interact with the timeline “last read” markers, to allow for persisting where the user was
reading a timeline between sessions and clients / devices.

Reading

Mastodon.markers_get(timeline: str | List[str] = ['home'])→ Dict[str, Marker]
Get the last-read-location markers for the specified timelines. Valid timelines are the same as in timeline()

Note that despite the singular name, timeline can be a list.

Returns a dict with the markers, keyed by timeline name.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Writing

Mastodon.markers_set(timelines: str | List[str], last_read_ids: Status | str | int | MaybeSnowflakeIdType |
List[Status] | List[str | int | MaybeSnowflakeIdType])→ Dict[str, Marker]

Set the “last read” marker(s) for the given timeline(s) to the given id(s)

Note that if you give an invalid timeline name, this will silently do nothing.

Returns a dict with the updated markers, keyed by timeline name.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

54 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

4.11.2 Reports

Reading

In Mastodon versions before 2.5.0 this function allowed for the retrieval of reports filed by the logged in user. It has
since been removed.

Mastodon.reports()→ NonPaginatableList[Report]
Fetch a list of reports made by the logged-in user.

Warning: This method has now finally been removed, and will not work on Mastodon versions 2.5.0 and above.

Added: Mastodon v1.1.0, last changed: Mastodon v1.1.0

Writing

This function allows you to report a user to the instance moderators as well as to the users home instance.

Mastodon.report(account_id: Account | str | int | MaybeSnowflakeIdType, status_ids: Status | str | int |
MaybeSnowflakeIdType | None = None, comment: str | None = None, forward: bool = False,
category: str | None = None, rule_ids: List[Rule | str | int | MaybeSnowflakeIdType] | None =
None)→ Report

Report statuses to the instances administrators.

Accepts a list of toot IDs associated with the report, and a comment.

Starting with Mastodon 3.5.0, you can also pass a category (one out of “spam”, “violation” or “other”) and
rule_ids (a list of rule IDs corresponding to the rules returned by the instance() API).

Set forward to True to forward a report of a remote user to that users instance as well as sending it to the instance
local administrators.

Added: Mastodon v1.1.0, last changed: Mastodon v3.5.0

4.12 Utility: Pagination and Blurhash

4.12.1 Pagination

These functions allow for convenient retrieval of paginated data.

Mastodon.fetch_next(previous_page: PaginatableList)→ PaginatableList | None
Fetches the next page of results of a paginated request. Pass in the previous page in its entirety, or the pagination
information dict returned as a part of that pages last status (‘_pagination_next’).

Returns the next page or None if no further data is available.

Mastodon.fetch_previous(next_page: PaginatableList)→ PaginatableList | None
Fetches the previous page of results of a paginated request. Pass in the previous page in its entirety, or the
pagination information dict returned as a part of that pages first status (‘_pagination_prev’).

Returns the previous page or None if no further data is available.

4.12. Utility: Pagination and Blurhash 55

Mastodon.py Documentation, Release 1.8.1

Mastodon.fetch_remaining(first_page)
Fetches all the remaining pages of a paginated request starting from a first page and returns the entire set of
results (including the first page that was passed in) as a big list.

Be careful, as this might generate a lot of requests, depending on what you are fetching, and might cause you to
run into rate limits very quickly.

4.12.2 Blurhash decoding

This function allows for easy basic decoding of blurhash strings to images. This requires Mastodon.pys optional
“blurhash” feature dependencies.

Mastodon.decode_blurhash(media_dict, out_size=(16, 16), size_per_component=True, return_linear=True)
Basic media-dict blurhash decoding.

out_size is the desired result size in pixels, either absolute or per blurhash component (this is the default).

By default, this function will return the image as linear RGB, ready for further scaling operations. If you want
to display the image directly, set return_linear to False.

Returns the decoded blurhash image as a three-dimensional list: [height][width][3], with the last dimension being
RGB colours.

For further info and tips for advanced usage, refer to the documentation for the blurhash module: https://github.
com/halcy/blurhash-python

4.13 Administration and moderation

These functions allow you to perform moderation actions on users and generally process reports using the API. To do
this, you need access to the “admin:read” and/or “admin:write” scopes or their more granular variants (both for the
application and the access token), as well as at least moderator access. Mastodon.py will not request these by default,
as that would be very dangerous.

BIG WARNING: TREAT ANY ACCESS TOKENS THAT HAVE ADMIN CREDENTIALS AS EXTREMELY,
MASSIVELY SENSITIVE DATA AND MAKE EXTRA SURE TO REVOKE THEM AFTER TESTING, NOT LET
THEM SIT IN FILES SOMEWHERE, TRACK WHICH ARE ACTIVE, ET CETERA. ANY EXPOSURE OF SUCH
ACCESS TOKENS MEANS YOU EXPOSE THE PERSONAL DATA OF ALL YOUR USERS TO WHOEVER HAS
THESE TOKENS. TREAT THEM WITH EXTREME CARE.

This is not to say that you should not treat access tokens from admin accounts that do not have admin: scopes attached
with a lot of care, but be extra careful with those that do.

4.13.1 Accounts

Mastodon.admin_accounts_v2(origin: str | None = None, by_domain: str | None = None, status: str | None =
None, username: str | None = None, display_name: str | None = None, email: str
| None = None, ip: str | None = None, permissions: str | None = None,
invited_by: Account | str | int | MaybeSnowflakeIdType = None, role_ids: List[str
| int | MaybeSnowflakeIdType] | None = None, max_id: str | int |
MaybeSnowflakeIdType | None = None, min_id: str | int | MaybeSnowflakeIdType
| None = None, since_id: str | int | MaybeSnowflakeIdType | None = None, limit:
int | None = None)→ AdminAccount

Fetches a list of accounts that match given criteria. By default, local accounts are returned.

56 Chapter 4. Research use and citing

https://github.com/halcy/blurhash-python
https://github.com/halcy/blurhash-python

Mastodon.py Documentation, Release 1.8.1

• Set origin to “local” or “remote” to get only local or remote accounts.

• Set by_domain to a domain to get only accounts from that domain.

• Set status to one of “active”, “pending”, “disabled”, “silenced” or “suspended” to get only accounts with
that moderation status (default: active)

• Set username to a string to get only accounts whose username contains this string.

• Set display_name to a string to get only accounts whose display name contains this string.

• Set email to an email to get only accounts with that email (this only works on local accounts).

• Set ip to an ip (as a string, standard v4/v6 notation) to get only accounts whose last active ip is that ip (this
only works on local accounts).

• Set permissions to “staff” to only get accounts with staff permissions.

• Set invited_by to an account id to get only accounts invited by this user.

• Set role_ids to a list of role IDs to get only accounts with those roles.

Returns a list of admin account dicts.

Pagination on this is a bit weird, so I would recommend not doing that and instead manually fetching.

Added: Mastodon v2.9.1, last changed: Mastodon v4.0.0

Mastodon.admin_accounts(remote: bool = False, by_domain: str | None = None, status: str = 'active', username:
str | None = None, display_name: str | None = None, email: str | None = None, ip:
str | None = None, staff_only: bool = False, max_id: str | int | MaybeSnowflakeIdType
| None = None, min_id: str | int | MaybeSnowflakeIdType | None = None, since_id:
str | int | MaybeSnowflakeIdType | None = None, limit: int | None = None)

Currently a synonym for admin_accounts_v1, now deprecated. You are strongly encouraged to use ad-
min_accounts_v2 instead, since this one is kind of bad.

!!!!! This function may be switched to calling the v2 API in the future. This is your warning. If you want to keep
using v1, use it explicitly. !!!!!

Pagination on this is a bit weird, so I would recommend not doing that and instead manually fetching.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_accounts_v1(remote: bool = False, by_domain: str | None = None, status: str = 'active',
username: str | None = None, display_name: str | None = None, email: str | None
= None, ip: str | None = None, staff_only: bool = False, max_id: str | int |
MaybeSnowflakeIdType | None = None, min_id: str | int | MaybeSnowflakeIdType
| None = None, since_id: str | int | MaybeSnowflakeIdType | None = None, limit:
int | None = None)→ AdminAccount

Fetches a list of accounts that match given criteria. By default, local accounts are returned.

• Set remote to True to get remote accounts, otherwise local accounts are returned (default: local accounts)

• Set by_domain to a domain to get only accounts from that domain.

• Set status to one of “active”, “pending”, “disabled”, “silenced” or “suspended” to get only accounts with
that moderation status (default: active)

• Set username to a string to get only accounts whose username contains this string.

• Set display_name to a string to get only accounts whose display name contains this string.

• Set email to an email to get only accounts with that email (this only works on local accounts).

4.13. Administration and moderation 57

Mastodon.py Documentation, Release 1.8.1

• Set ip to an ip (as a string, standard v4/v6 notation) to get only accounts whose last active ip is that ip (this
only works on local accounts).

• Set staff_only to True to only get staff accounts (this only works on local accounts).

Note that setting the boolean parameters to False does not mean “give me users to which this does not apply” but
instead means “I do not care if users have this attribute”.

Deprecated in Mastodon version 3.5.0.

Returns a list of admin account dicts.

Pagination on this is a bit weird, so I would recommend not doing that and instead manually fetching.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_account(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType)→ AdminAccount
Fetches a single admin account dict for the user with the given id.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_account_enable(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType)→
AdminAccount

Reenables login for a local account for which login has been disabled.

The returned object reflects the updates to the account.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_account_approve(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType)→
AdminAccount

Approves a pending account.

The returned object reflects the updates to the account.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_account_reject(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType)→
AdminAccount

Rejects and deletes a pending account.

The returned object is that of the now-deleted account.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_account_unsilence(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType)→
AdminAccount

Unsilences an account.

The returned object reflects the updates to the account.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_account_unsuspend(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType)→
AdminAccount

Unsuspends an account.

The returned object reflects the updates to the account.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

58 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Mastodon.admin_account_moderate(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType, action: str
| None = None, report_id: AdminReport | str | int | None = None,
warning_preset_id: str | int | None = None, text: str | None = None,
send_email_notification: bool | None = True)

Perform a moderation action on an account.

Valid actions are:
• “disable” - for a local user, disable login.

• “silence” - hide the users posts from all public timelines.

• “suspend” - irreversibly delete all the user’s posts, past and future.

• “sensitive” - forcce an accounts media visibility to always be sensitive.

If no action is specified, the user is only issued a warning.

Specify the id of a report as report_id to close the report with this moderation action as the resolution. Specify
warning_preset_id to use a warning preset as the notification text to the user, or text to specify text directly. If
both are specified, they are concatenated (preset first). Note that there is currently no API to retrieve or create
warning presets.

Set send_email_notification to False to not send the user an email notification informing them of the moderation
action.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

4.13.2 Reports

Mastodon.admin_reports(resolved: bool | None = False, account_id: Account | AdminAccount | str | int |
MaybeSnowflakeIdType | None = None, target_account_id: Account | AdminAccount |
str | int | MaybeSnowflakeIdType | None = None, max_id: str | int |
MaybeSnowflakeIdType | None = None, min_id: str | int | MaybeSnowflakeIdType |
None = None, since_id: str | int | MaybeSnowflakeIdType | None = None, limit: int |
None = None)→ PaginatableList[AdminReport]

Fetches the list of reports.

Set resolved to True to search for resolved reports. account_id and target_account_id can be used to get reports
filed by or about a specific user.

Returns a list of report dicts.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_report(id: AdminReport | str | int | MaybeSnowflakeIdType)→ AdminReport
Fetches the report with the given id.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_report_assign(id: AdminReport | str | int | MaybeSnowflakeIdType)→ AdminReport
Assigns the given report to the logged-in user.

The returned object reflects the updates to the report.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

4.13. Administration and moderation 59

Mastodon.py Documentation, Release 1.8.1

Mastodon.admin_report_unassign(id: AdminReport | str | int | MaybeSnowflakeIdType)→ AdminReport
Unassigns the given report from the logged-in user.

The returned object reflects the updates to the report.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_report_reopen(id: AdminReport | str | int | MaybeSnowflakeIdType)→ AdminReport
Reopens a closed report.

The returned object reflects the updates to the report.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_report_resolve(id: AdminReport | str | int | MaybeSnowflakeIdType)→ AdminReport
Marks a report as resolved (without taking any action).

The returned object reflects the updates to the report.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

4.13.3 Trends

Mastodon.admin_trending_tags(limit: int | None = None)→ NonPaginatableList[Tag]
Admin version of trending_tags(). Includes unapproved tags.

The returned list is sorted, descending, by the instance’s trending algorithm.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.admin_trending_statuses()→ NonPaginatableList[Status]
Admin version of trending_statuses(). Includes unapproved tags.

The returned list is sorted, descending, by the instance’s trending algorithm.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.admin_trending_links()→ NonPaginatableList[PreviewCard]
Admin version of trending_links(). Includes unapproved tags.

The returned list is sorted, descending, by the instance’s trending algorithm.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.admin_domain_blocks(id: str | int | MaybeSnowflakeIdType | None = None, max_id: str | int |
MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int |
MaybeSnowflakeIdType | None = None, limit: int | None = None)→
AdminDomainBlock | PaginatableList[AdminDomainBlock]

Fetches a list of blocked domains. Requires scope admin:read:domain_blocks.

Provide an id to fetch a specific domain block based on its database id.

Returns a list of admin domain block dicts, raises a MastodonAPIError if the specified block does not exist.

Added: Mastodon v4.0.0, last changed: Mastodon v4.0.0

60 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

4.13.4 Federation

Mastodon.admin_create_domain_block(domain: str, severity: str | None = None, reject_media: bool | None =
None, reject_reports: bool | None = None, private_comment: str | None
= None, public_comment: str | None = None, obfuscate: bool | None =
None)→ AdminDomainBlock

Perform a moderation action on a domain. Requires scope admin:write:domain_blocks.

Valid severities are:
• “silence” - hide all posts from federated timelines and do not show notifications to local users from the

remote instance’s users unless they are following the remote user.

• “suspend” - deny interactions with this instance going forward. This action is reversible.

• “limit” - generally used with reject_media=true to force reject media from an instance without silencing
or suspending..

If no action is specified, the domain is only silenced. domain is the domain to block. Note that using the top
level domain will also imapct all subdomains. ie, example.com will also impact subdomain.example.com. re-
ject_media will not download remote media on to your local instance media storage. reject_reports ignores
all reports from the remote instance. private_comment sets a private admin comment for the domain. pub-
lic_comment sets a publicly available comment for this domain, which will be available to local users and may
be available to everyone depending on your settings. obfuscate censors some part of the domain name. Useful if
the domain name contains unwanted words like slurs.

Returns the new domain block as an admin domain block dict.

Added: Mastodon v4.0.0, last changed: Mastodon v4.0.0

Mastodon.admin_update_domain_block(id, severity: str | None = None, reject_media: bool | None = None,
reject_reports: bool | None = None, private_comment: str | None =
None, public_comment: str | None = None, obfuscate: bool | None =
None)→ AdminDomainBlock

Modify existing moderation action on a domain. Requires scope admin:write:domain_blocks.

Valid severities are:
• “silence” - hide all posts from federated timelines and do not show notifications to local users from the

remote instance’s users unless they are following the remote user.

• “suspend” - deny interactions with this instance going forward. This action is reversible.

• “limit” - generally used with reject_media=true to force reject media from an instance without silencing
or suspending.

If no action is specified, the domain is only silenced. domain is the domain to block. Note that using the top
level domain will also imapct all subdomains. ie, example.com will also impact subdomain.example.com. re-
ject_media will not download remote media on to your local instance media storage. reject_reports ignores
all reports from the remote instance. private_comment sets a private admin comment for the domain. pub-
lic_comment sets a publicly available comment for this domain, which will be available to local users and may
be available to everyone depending on your settings. obfuscate censors some part of the domain name. Useful if
the domain name contains unwanted words like slurs.

Returns the modified domain block as an admin domain block dict, raises a MastodonAPIError if the specified
block does not exist.

Added: Mastodon v4.0.0, last changed: Mastodon v4.0.0

4.13. Administration and moderation 61

Mastodon.py Documentation, Release 1.8.1

Mastodon.admin_delete_domain_block(id=typing.Union[mastodon.types.AdminDomainBlock, str, int,
mastodon.types_base.MaybeSnowflakeIdType])

Removes moderation action against a given domain. Requires scope admin:write:domain_blocks.

Provide an id to remove a specific domain block based on its database id.

Raises a MastodonAPIError if the specified block does not exist.

Added: Mastodon v4.0.0, last changed: Mastodon v4.0.0

4.13.5 Moderation actions

Mastodon.admin_measures(start_at, end_at, active_users: bool = False, new_users: bool = False, interactions:
bool = False, opened_reports: bool = False, resolved_reports: bool = False,
tag_accounts: Tag | str | int | MaybeSnowflakeIdType | None = None, tag_uses: Tag |
str | int | MaybeSnowflakeIdType | None = None, tag_servers: Tag | str | int |
MaybeSnowflakeIdType | None = None, instance_accounts: str | None = None,
instance_media_attachments: str | None = None, instance_reports: str | None =
None, instance_statuses: str | None = None, instance_follows: str | None = None,
instance_followers: str | None = None)→ NonPaginatableList[AdminMeasure]

Retrieves numerical instance information for the time period (at day granularity) between start_at and end_at.

• active_users: Pass true to retrieve the number of active users on your instance within the time period

• new_users: Pass true to retrieve the number of users who joined your instance within the time period

• interactions: Pass true to retrieve the number of interactions (favourites, boosts, replies) on local statuses
within the time period

• opened_reports: Pass true to retrieve the number of reports filed within the time period

• resolved_reports = Pass true to retrieve the number of reports resolved within the time period

• tag_accounts: Pass a tag ID to get the number of accounts which used that tag in at least one status within
the time period

• tag_uses: Pass a tag ID to get the number of statuses which used that tag within the time period

• tag_servers: Pass a tag ID to to get the number of remote origin servers for statuses which used that tag
within the time period

• instance_accounts: Pass a domain to get the number of accounts originating from that remote domain
within the time period

• instance_media_attachments: Pass a domain to get the amount of space used by media attachments from
that remote domain within the time period

• instance_reports: Pass a domain to get the number of reports filed against accounts from that remote domain
within the time period

• instance_statuses: Pass a domain to get the number of statuses originating from that remote domain within
the time period

• instance_follows: Pass a domain to get the number of accounts from a remote domain followed by that local
user within the time period

• instance_followers: Pass a domain to get the number of local accounts followed by accounts from that
remote domain within the time period

This API call is relatively expensive - watch your servers load if you want to get a lot of statistical data. Especially
the instance_statuses stats might take a long time to compute and, in fact, time out.

62 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

There is currently no way to get tag IDs implemented in Mastodon.py, because the Mastodon public API does
not implement one. This will be fixed in a future release.

Returns a list of admin measure dicts.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.admin_dimensions(start_at: datetime, end_at: datetime, limit: int | None = None, languages: bool =
False, sources: bool = False, servers: bool = False, space_usage: bool = False,
software_versions: bool = False, tag_servers: Tag | str | int |
MaybeSnowflakeIdType | None = None, tag_languages: Tag | str | int |
MaybeSnowflakeIdType | None = None, instance_accounts: str | None = None,
instance_languages: str | None = None)→ NonPaginatableList[AdminDimension]

Retrieves primarily categorical instance information for the time period (at day granularity) between start_at and
end_at.

• languages: Pass true to get the most-used languages on this server

• sources: Pass true to get the most-used client apps on this server

• servers: Pass true to get the remote servers with the most statuses

• space_usage: Pass true to get the how much space is used by different components your software stack

• software_versions: Pass true to get the version numbers for your software stack

• tag_servers: Pass a tag ID to get the most-common servers for statuses including a trending tag

• tag_languages: Pass a tag ID to get the most-used languages for statuses including a trending tag

• instance_accounts: Pass a domain to get the most-followed accounts from a remote server

• instance_languages: Pass a domain to get the most-used languages from a remote server

Pass limit to set how many results you want on queries where that makes sense.

This API call is relatively expensive - watch your servers load if you want to get a lot of statistical data.

There is currently no way to get tag IDs implemented in Mastodon.py, because the Mastodon public API does
not implement one. This will be fixed in a future release.

Returns a list of admin dimension dicts.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.admin_retention(start_at: datetime, end_at: datetime, frequency: str = 'day')→
NonPaginatableList[AdminRetention]

Gets user retention statistics (at frequency - “day” or “month” - granularity) between start_at and end_at.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

4.14 Contributing

4.14.1 How to contribute

Mastodon.py is incomplete a lot of the time because Mastodon has a very rich API with many functions, not all of
which are implemented here. Even when it is complete for a given Mastodon API version, there are forks and other
Mastodon-API-compatible software that implement their own methods which Mastodon.py could in principle support.
And even when all of that work is done, it will inevitably have bugs, or places where the library could be made easier
to use (which, really, are also bugs), missing tests that could catch bugs quicker, tooling to make updating everything
faster, et cetera.

4.14. Contributing 63

Mastodon.py Documentation, Release 1.8.1

You can help get more of this done, and you should! This can take many forms: If you notice somtehing is missing,
broken or confusing:

• You could file an issue on github, either with or without suggestions for how to fix the issue: https://github.com/
halcy/Mastodon.py/issues

• You could, after filing an issue, do a PR that fixes that issue

• You could even just vaguely complain in my (https://icosahedron.website/@halcy) general direction on Mastodon

All of these help immensely, even if it’s just “hey, I don’t really get why X isn’t working”. We can’t make the library
better if we don’t know what the actual issues people have are, so while I’m not going to implement every suggestion
and do have some ideas of what does and does not make a good library, your feedback is, in fact, extremely valuable
and welcome.

If you’re looking for some “starter issues” to address: Currently, we don’t have support for much of any of the new 4.0.0
API endpoints implemented. Pick one and have a go, especially from the admin API. Tests are somewhat annoying to
set up, as they need to run against a live mastodon instance - great if you can write them, but feel free to skip out on
them, too, or just write them “in the dry” without actually running them and leaving that for someone else.

4.14.2 Tests

Mastodon.py has an extensive suite of tests. The purpose of these is twofold:

• Make sure nothing is broken and that there aren’t any regressions

• Where the official docs are unclear, verify assumptions we make about the Mastodon API and document the
results

The tests use pytest and pytest-vcr so that they can be ran even without a mastodon server, but new tests require setting
up a mastodon dev server. Further documentation can be found in the “tests” directory in the repository.

4.15 Every function on a huge CTRL-F-able page

Mastodon.retrieve_mastodon_version()

Determine installed Mastodon version and set major, minor and patch (not including RC info) accordingly.

Returns the version string, possibly including rc info.

Mastodon.verify_minimum_version(version_str, cached=False)
Update version info from server and verify that at least the specified version is present.

If you specify “cached”, the version info update part is skipped.

Returns True if version requirement is satisfied, False if not.

static Mastodon.create_app(client_name, scopes: List[str] = ['read', 'write', 'follow', 'push'], redirect_uris: str
| List[str] | None = None, website: str | None = None, to_file: str | PurePath |
None = None, api_base_url: str | None = None, request_timeout: float = 300,
session: Session | None = None, user_agent: str = 'mastodonpy')→ Tuple[str, str]

Create a new app with given client_name and scopes (The basic scopes are “read”, “write”, “follow” and “push”
- more granular scopes are available, please refer to Mastodon documentation for which) on the instance given
by api_base_url.

Specify redirect_uris if you want users to be redirected to a certain page after authenticating in an OAuth flow.
You can specify multiple URLs by passing a list. Note that if you wish to use OAuth authentication with redirects,
the redirect URI must be one of the URLs specified here.

64 Chapter 4. Research use and citing

https://github.com/halcy/Mastodon.py/issues
https://github.com/halcy/Mastodon.py/issues
https://icosahedron.website/@halcy

Mastodon.py Documentation, Release 1.8.1

Specify to_file to persist your app’s info to a file so you can use it in the constructor. Specify website to give a
website for your app.

Specify session with a requests.Session for it to be used instead of the default. This can be used to, amongst other
things, adjust proxy or SSL certificate settings.

Specify user_agent if you want to use a specific name as User-Agent header, otherwise “mastodonpy” will be
used.

Presently, app registration is open by default, but this is not guaranteed to be the case for all Mastodon instances
in the future.

Returns client_id and client_secret, both as strings.

Mastodon.app_verify_credentials()→ Application
Fetch information about the current application.

Added: Mastodon v2.0.0, last changed: Mastodon v2.7.2

Mastodon.__init__(client_id: str | PurePath | None = None, client_secret: str | None = None, access_token: str |
PurePath | None = None, api_base_url: str | None = None, debug_requests: bool = False,
ratelimit_method: str = 'wait', ratelimit_pacefactor: float = 1.1, request_timeout: float = 300,
mastodon_version: str | None = None, version_check_mode: str = 'created', session: Session
| None = None, feature_set: str = 'mainline', user_agent: str = 'mastodonpy', lang: str | None
= None)

Create a new API wrapper instance based on the given client_secret and client_id on the instance given by
api_base_url. If you give a client_id and it is not a file, you must also give a secret. If you specify an access_token
then you don’t need to specify a client_id. It is allowed to specify neither - in this case, you will be restricted to
only using endpoints that do not require authentication. If a file is given as client_id, client ID, secret and base
url are read from that file.

You can also specify an access_token, directly or as a file (as written by log_in()). If a file is given, Mastodon.py
also tries to load the base URL from this file, if present. A client id and secret are not required in this case.

Mastodon.py can try to respect rate limits in several ways, controlled by ratelimit_method. “throw” makes func-
tions throw a MastodonRatelimitError when the rate limit is hit. “wait” mode will, once the limit is hit, wait and
retry the request as soon as the rate limit resets, until it succeeds. “pace” works like throw, but tries to wait in
between calls so that the limit is generally not hit (how hard it tries to avoid hitting the rate limit can be controlled
by ratelimit_pacefactor). The default setting is “wait”. Note that even in “wait” and “pace” mode, requests can
still fail due to network or other problems! Also note that “pace” and “wait” are NOT thread safe.

By default, a timeout of 300 seconds is used for all requests. If you wish to change this, pass the desired timeout
(in seconds) as request_timeout.

For fine-tuned control over the requests object use session with a requests.Session.

The mastodon_version parameter can be used to specify the version of Mastodon that Mastodon.py will expect
to be installed on the server. The function will throw an error if an unparseable Version is specified. If no version
is specified, Mastodon.py will set mastodon_version to the detected version.

The version check mode can be set to “created” (the default behaviour), “changed” or “none”. If set to “created”,
Mastodon.py will throw an error if the version of Mastodon it is connected to is too old to have an endpoint. If it
is set to “changed”, it will throw an error if the endpoint’s behaviour has changed after the version of Mastodon
that is connected has been released. If it is set to “none”, version checking is disabled.

feature_set can be used to enable behaviour specific to non-mainline Mastodon API implementations. Details
are documented in the functions that provide such functionality. Currently supported feature sets are mainline,
fedibird and pleroma.

For some Mastodon instances a User-Agent header is needed. This can be set by parameter user_agent. Starting
from Mastodon.py 1.5.2 create_app() stores the application name into the client secret file. If client_id points to

4.15. Every function on a huge CTRL-F-able page 65

Mastodon.py Documentation, Release 1.8.1

this file, the app name will be used as User-Agent header as default. It is possible to modify old secret files and
append a client app name to use it as a User-Agent name.

lang can be used to change the locale Mastodon will use to generate responses. Valid parameters are all ISO
639-1 (two letter) or for a language that has none, 639-3 (three letter) language codes. This affects some error
messages (those related to validation) and trends. You can change the language using set_language().

If no other User-Agent is specified, “mastodonpy” will be used.

Mastodon.log_in(username: str | None = None, password: str | None = None, code: str | None = None,
redirect_uri: str = 'urn:ietf:wg:oauth:2.0:oob', refresh_token: str | None = None, scopes:
List[str] = ['read', 'write', 'follow', 'push'], to_file=typing.Union[str, pathlib.PurePath])→ str

Get the access token for a user.

The username is the email address used to log in into Mastodon.

Can persist access token to file to_file, to be used in the constructor.

Handles password and OAuth-based authorization.

Will throw a MastodonIllegalArgumentError if the OAuth flow data or the username / password credentials given
are incorrect, and MastodonAPIError if all of the requested scopes were not granted.

For OAuth 2, obtain a code via having your user go to the URL returned by auth_request_url() and pass it as the
code parameter. In this case, make sure to also pass the same redirect_uri parameter as you used when generating
the auth request URL. If passing code`you should not pass `username or password.

Returns the access token as a string.

Mastodon.auth_request_url(client_id: str | PurePath | None = None, redirect_uris: str =
'urn:ietf:wg:oauth:2.0:oob', scopes: List[str] = ['read', 'write', 'follow', 'push'],
force_login: bool = False, state: str | None = None, lang: str | None = None)→ str

Returns the URL that a client needs to request an OAuth grant from the server.

To log in with OAuth, send your user to this URL. The user will then log in and get a code which you can pass
to log_in().

scopes are as in log_in(), redirect_uris is where the user should be redirected to after authentication. Note that
redirect_uris must be one of the URLs given during app registration, and that despite the plural-like name, you
only get to use one here. When using urn:ietf:wg:oauth:2.0:oob, the code is simply displayed, otherwise it is
added to the given URL as the “code” request parameter.

Pass force_login if you want the user to always log in even when already logged into web Mastodon (i.e. when
registering multiple different accounts in an app).

state is the oauth state parameter to pass to the server. It is strongly suggested to use a random, nonguessable
value (i.e. nothing meaningful and no incrementing ID) to preserve security guarantees. It can be left out for
non-web login flows.

Pass an ISO 639-1 (two letter) or, for languages that do not have one, 639-3 (three letter) language code as lang
to control the display language for the oauth form.

Mastodon.set_language(lang)
Set the locale Mastodon will use to generate responses. Valid parameters are all ISO 639-1 (two letter) or, for
languages that do not have one, 639-3 (three letter) language codes. This affects some error messages (those
related to validation) and trends.

Mastodon.revoke_access_token()

Revoke the oauth token the user is currently authenticated with, effectively removing the apps access and requir-
ing the user to log in again.

66 Chapter 4. Research use and citing

urn:ietf:wg:oauth:2.0:oob

Mastodon.py Documentation, Release 1.8.1

Mastodon.create_account(username: str, password: str, email: str, agreement: bool = False, reason: str | None
= None, locale: str = 'en', scopes: List[str] = ['read', 'write', 'follow', 'push'], to_file:
str | None = None, return_detailed_error: bool = False)→ str | None | Tuple[str |
None, AccountCreationError]

Creates a new user account with the given username, password and email. “agreement” must be set to true (after
showing the user the instance’s user agreement and having them agree to it), “locale” specifies the language
for the confirmation email as an ISO 639-1 (two letter) or, if a language does not have one, 639-3 (three letter)
language code. reason can be used to specify why a user would like to join if approved-registrations mode is on.

Does not require an access token, but does require a client grant.

By default, this method is rate-limited by IP to 5 requests per 30 minutes.

Returns an access token (just like log_in), which it can also persist to to_file, and sets it internally so that the user
is now logged in. Note that this token can only be used after the user has confirmed their email.

By default, the function will throw if the account could not be created. Alternately, when return_detailed_error
is passed, Mastodon.py will return the detailed error response that the API provides (Starting from version 3.4.0
- not checked here) as an dict with error details as the second return value and the token returned as None in case
of error. The dict will contain a text error values as well as a details value which is a dict with one optional key
for each potential field (username, password, email and agreement), each if present containing a dict with an
error category and free text description. Valid error categories are:

• ERR_BLOCKED - When e-mail provider is not allowed

• ERR_UNREACHABLE - When e-mail address does not resolve to any IP via DNS (MX, A, AAAA)

• ERR_TAKEN - When username or e-mail are already taken

• ERR_RESERVED - When a username is reserved, e.g. “webmaster” or “admin”

• ERR_ACCEPTED - When agreement has not been accepted

• ERR_BLANK - When a required attribute is blank

• ERR_INVALID - When an attribute is malformed, e.g. wrong characters or invalid e-mail address

• ERR_TOO_LONG - When an attribute is over the character limit

• ERR_TOO_SHORT - When an attribute is under the character requirement

• ERR_INCLUSION - When an attribute is not one of the allowed values, e.g. unsupported locale

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0

Mastodon.email_resend_confirmation()

Requests a re-send of the users confirmation mail for an unconfirmed logged in user.

Only available to the app that the user originally signed up with.

Added: Mastodon v3.4.0, last changed: Mastodon v3.4.0

Mastodon.status(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Fetch information about a single toot.

Does not require authentication for publicly visible statuses.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0

Mastodon.status_context(id: Status | str | int | MaybeSnowflakeIdType)→ Context
Fetch information about ancestors and descendants of a toot.

Does not require authentication for publicly visible statuses.

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0

4.15. Every function on a huge CTRL-F-able page 67

Mastodon.py Documentation, Release 1.8.1

Mastodon.status_reblogged_by(id: Status | str | int | MaybeSnowflakeIdType)→ NonPaginatableList[Account]
Fetch a list of users that have reblogged a status.

Does not require authentication for publicly visible statuses.

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0

Mastodon.status_favourited_by(id: Status | str | int | MaybeSnowflakeIdType)→
NonPaginatableList[Account]

Fetch a list of users that have favourited a status.

Does not require authentication for publicly visible statuses.

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0

Mastodon.status_card(id: Status | str | int | MaybeSnowflakeIdType)→ PreviewCard
Fetch a card associated with a status. A card describes an object (such as an external video or link) embedded
into a status.

Does not require authentication for publicly visible statuses.

This function is deprecated as of 3.0.0 and the endpoint does not exist anymore - you should just use the “card”
field of the status dicts instead. Mastodon.py will try to mimic the old behaviour, but this is somewhat inefficient
and not guaranteed to be the case forever.

Added: Mastodon v1.0.0, last changed: Mastodon v3.0.0

Mastodon.status_history(id: Status | str | int | MaybeSnowflakeIdType)→ NonPaginatableList[Status]
Returns the edit history of a status as a list of Status objects, starting from the original form. Note that this means
that a status that has been edited once will have two entries in this list, a status that has been edited twice will
have three, and so on.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.status_source(id: Status | str | int | MaybeSnowflakeIdType)→ StatusSource
Returns the source of a status for editing.

Return value is a dictionary containing exactly the parameters you could pass to status_update() to change nothing
about the status, except status is text instead.

Mastodon.favourites(max_id: str | int | MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int | MaybeSnowflakeIdType | None
= None, limit: int | None = None)→ PaginatableList[Status]

Fetch the logged-in user’s favourited statuses.

This endpoint uses internal ids for pagination, passing status ids to max_id, min_id, or since_id will not work.

Returns a list of status dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0

Mastodon.bookmarks(max_id: str | int | MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int | MaybeSnowflakeIdType | None =
None, limit: int | None = None)→ PaginatableList[Status]

Get a list of statuses bookmarked by the logged-in user.

This endpoint uses internal ids for pagination, passing status ids to max_id, min_id, or since_id will not work.

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

68 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Mastodon.status_post(status: str, in_reply_to_id: Status | str | int | MaybeSnowflakeIdType | None = None,
media_ids: List[MediaAttachment | str | int | MaybeSnowflakeIdType] | None = None,
sensitive: bool = False, visibility: str | None = None, spoiler_text: str | None = None,
language: str | None = None, idempotency_key: str | None = None, content_type: str |
None = None, scheduled_at: datetime | None = None, poll: Poll | str | int |
MaybeSnowflakeIdType | None = None, quote_id: Status | str | int |
MaybeSnowflakeIdType | None = None)→ Status | ScheduledStatus

Post a status. Can optionally be in reply to another status and contain media.

media_ids should be a list. (If it’s not, the function will turn it into one.) It can contain up to four pieces of
media (uploaded via media_post()). media_ids can also be the `media dicts`_ returned by media_post() - they
are unpacked automatically.

The sensitive boolean decides whether or not media attached to the post should be marked as sensitive, which
hides it by default on the Mastodon web front-end.

The visibility parameter is a string value and accepts any of:

• 'direct' - post will be visible only to mentioned users, known in Mastodon’s UI as “Mentioned users
only”

• 'private' - post will be visible only to followers, known in Mastodon’s UI as “Followers only”

• 'unlisted' - post will be public but will not appear on the public timelines

• 'public' - post will be public and will appear on public timelines

If not passed in, visibility defaults to match the current account’s default-privacy setting (starting with Mastodon
version 1.6) or its locked setting - 'private' if the account is locked, 'public' otherwise (for Mastodon
versions lower than 1.6).

The spoiler_text parameter is a string to be shown as a warning before the text of the status. If no text is passed
in, no warning will be displayed.

Specify language to override automatic language detection. The parameter accepts all valid ISO 639-1 (2-letter)
or for languages where that do not have one, 639-3 (three letter) language codes.

You can set idempotency_key to a value to uniquely identify an attempt at posting a status. Even if you call this
function more than once, if you call it with the same idempotency_key, only one status will be created.

Pass a datetime as scheduled_at to schedule the toot for a specific time (the time must be at least 5 minutes into
the future). If this is passed, status_post returns a scheduled status dict instead.

Pass poll to attach a poll to the status. An appropriate object can be constructed using make_poll() . Note that
as of Mastodon version 2.8.2, you can only have either media or a poll attached, not both at the same time.

Specific to “pleroma” feature set:: Specify content_type to set the content type of your post on Pleroma. It
accepts ‘text/plain’ (default), ‘text/markdown’, ‘text/html’ and ‘text/bbcode’. This parameter is not supported on
Mastodon servers, but will be safely ignored if set.

Specific to “fedibird” feature set:: The quote_id parameter is a non-standard extension that specifies the id of
a quoted status.

Returns a status dict with the new status.

Added: Mastodon v1.0.0, last changed: Mastodon v2.8.0

4.15. Every function on a huge CTRL-F-able page 69

Mastodon.py Documentation, Release 1.8.1

Mastodon.status_reply(to_status: Status | str | int | MaybeSnowflakeIdType, status: str, media_ids:
List[MediaAttachment | str | int | MaybeSnowflakeIdType] | None = None, sensitive:
bool = False, visibility: str | None = None, spoiler_text: str | None = None, language:
str | None = None, idempotency_key: str | None = None, content_type: str | None =
None, scheduled_at: datetime | None = None, poll: Poll | str | int |
MaybeSnowflakeIdType | None = None, quote_id: Status | str | int |
MaybeSnowflakeIdType | None = None, untag: bool = False)→ Status

Helper function - acts like status_post, but prepends the name of all the users that are being replied to the status
text and retains CW and visibility if not explicitly overridden.

Note that to_status should be a status dict and not an ID.

Set untag to True if you want the reply to only go to the user you are replying to, removing every other mentioned
user from the conversation.

Added: Mastodon v1.0.0, last changed: Mastodon v2.8.0

Mastodon.toot(status: str)→ Status
Synonym for status_post() that only takes the status text as input.

Usage in production code is not recommended.

Added: Mastodon v1.0.0, last changed: Mastodon v2.8.0

Mastodon.make_poll(options: List[str], expires_in: int, multiple: bool = False, hide_totals: bool = False)→ Poll
Generate a poll object that can be passed as the poll option when posting a status.

options is an array of strings with the poll options (Maximum, by default: 4 - see the instance configuration for
the actual value on any given instance, if stated). expires_in is the time in seconds for which the poll should be
open. Set multiple to True to allow people to choose more than one answer. Set hide_totals to True to hide the
results of the poll until it has expired.

Added: Mastodon v2.8.0, last changed: Mastodon v2.8.0

Mastodon.status_reblog(id: Status | str | int | MaybeSnowflakeIdType, visibility: str | None = None)→ Status
Reblog / boost a status.

The visibility parameter functions the same as in status_post() and allows you to reduce the visibility of a re-
blogged status.

Returns a new Status that wraps around the reblogged status.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0

Mastodon.status_unreblog(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Un-reblog a status.

Returns the status that used to be reblogged.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0

Mastodon.status_favourite(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Favourite a status.

Returns the favourited status.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0

Mastodon.status_unfavourite(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Un-favourite a status.

Returns the un-favourited status.

Added: Mastodon v1.0.0, last changed: Mastodon v2.0.0

70 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Mastodon.status_mute(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Mute notifications for a status.

Returns the now muted status

Added: Mastodon v1.4.0, last changed: Mastodon v2.0.0

Mastodon.status_unmute(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Unmute notifications for a status.

Returns the status that used to be muted.

Added: Mastodon v1.4.0, last changed: Mastodon v2.0.0

Mastodon.status_bookmark(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Bookmark a status as the logged-in user.

Returns the now bookmarked status

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

Mastodon.status_unbookmark(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Unbookmark a bookmarked status for the logged-in user.

Returns the status that used to be bookmarked.

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

Mastodon.status_delete(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Delete a status

Returns the now-deleted status, with an added “source” attribute that contains the text that was used to compose
this status (this can be used to power “delete and redraft” functionality)

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0

Mastodon.status_update(id: Status | str | int | MaybeSnowflakeIdType, status: str | None = None, spoiler_text:
str | None = None, sensitive: bool | None = None, media_ids: List[MediaAttachment |
str | int | MaybeSnowflakeIdType] | None = None, poll: Poll | str | int |
MaybeSnowflakeIdType | None = None)→ Status

Edit a status. The meanings of the fields are largely the same as in status_post(), though not every field can be
edited.

Note that editing a poll will reset the votes.

TODO: Currently doesn’t support editing media descriptions, implement that.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.scheduled_statuses(max_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None,
min_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None,
since_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None,
limit: int | None = None)→ PaginatableList[ScheduledStatus]

Fetch a list of scheduled statuses

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0

Mastodon.scheduled_status(id: ScheduledStatus | str | int | MaybeSnowflakeIdType)→ ScheduledStatus
Fetch information about the scheduled status with the given id.

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0

4.15. Every function on a huge CTRL-F-able page 71

Mastodon.py Documentation, Release 1.8.1

Mastodon.scheduled_status_update(id: Status | str | int | MaybeSnowflakeIdType, scheduled_at: datetime)→
ScheduledStatus

Update the scheduled time of a scheduled status.

New time must be at least 5 minutes into the future.

Returned object reflects the updates to the scheduled status.

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0

Mastodon.scheduled_status_delete(id: Status | str | int | MaybeSnowflakeIdType)
Deletes a scheduled status.

Added: Mastodon v2.7.0, last changed: Mastodon v2.7.0

Mastodon.media_post(media_file: str | PurePath | IO[bytes], mime_type: str | None = None, description: str |
None = None, focus: Tuple[float, float] | None = None, file_name: str | None = None,
thumbnail: str | PurePath | IO[bytes] | None = None, thumbnail_mime_type: str | None =
None, synchronous: bool = False)→ MediaAttachment

Post an image, video or audio file. media_file can either be data or a file name. If data is passed directly, the
mime type has to be specified manually, otherwise, it is determined from the file name. focus should be a tuple
of floats between -1 and 1, giving the x and y coordinates of the images focus point for cropping (with the origin
being the images center).

Throws a MastodonIllegalArgumentError if the mime type of the passed data or file can not be determined
properly.

file_name can be specified to upload a file with the given name, which is ignored by Mastodon, but some other
Fediverse server software will display it. If no name is specified, a random name will be generated. The filename
of a file specified in media_file will be ignored.

Starting with Mastodon 3.2.0, thumbnail can be specified in the same way as media_file to upload a custom
thumbnail image for audio and video files.

Returns a media dict. This contains the id that can be used in status_post to attach the media file to a toot.

When using the v2 API (post Mastodon version 3.1.4), the url in the returned dict will be null, since attachments
are processed asynchronously. You can fetch an updated dict using media. Pass “synchronous” to emulate the
old behaviour. Not recommended, inefficient and deprecated, will eat your API quota, you know the deal.

Added: Mastodon v1.0.0, last changed: Mastodon v3.2.0

Mastodon.media_update(id: MediaAttachment | str | int | MaybeSnowflakeIdType, description: str | None = None,
focus: Tuple[float, float] | None = None, thumbnail: str | PurePath | IO[bytes] | None =
None, thumbnail_mime_type=None)→ MediaAttachment

Update the metadata of the media file with the given id. description and focus and thumbnail are as in me-
dia_post() .

The returned dict reflects the updates to the media attachment.

Added: Mastodon v2.3.0, last changed: Mastodon v3.2.0

Mastodon.poll(id: Poll | str | int | MaybeSnowflakeIdType)→ Poll
Fetch information about the poll with the given id

Added: Mastodon v2.8.0, last changed: Mastodon v2.8.0

Mastodon.account_verify_credentials()→ Account
Fetch logged-in user’s account information. Returns the version of the Account object with source field.

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0

72 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Mastodon.me()→ Account
Get this user’s account. Synonym for account_verify_credentials(), does exactly the same thing, just exists be-
cause account_verify_credentials() has a confusing name.

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0

Mastodon.account(id: Account | str | int | MaybeSnowflakeIdType)→ Account
Fetch account information by user id.

Does not require authentication for publicly visible accounts.

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0

Mastodon.account_search(q: str, limit: int | None = None, following: bool = False, resolve: bool = False, offset:
int | None = None)→ NonPaginatableList[Account]

Fetch matching accounts. Will lookup an account remotely if the search term is in the username@domain format
and not yet in the database. Set following to True to limit the search to users the logged-in user follows.

Paginated in a weird way (“limit” / “offset”), if you want to fetch all results here please do it yourself for now.

Added: Mastodon v1.0.0, last changed: Mastodon v2.8.0

Mastodon.account_lookup(acct: str)→ Account
Look up an account from user@instance form (@instance allowed but not required for local accounts). Will only
return accounts that the instance already knows about, and not do any webfinger requests. Use account_search
if you need to resolve users through webfinger from remote.

Added: Mastodon v3.4.0, last changed: Mastodon v3.4.0

Mastodon.featured_tags()→ NonPaginatableList[Tag]
Return the hashtags the logged-in user has set to be featured on their profile as a list of featured tag dicts.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.featured_tag_suggestions()→ NonPaginatableList[Tag]
Returns the logged-in user’s 10 most commonly-used hashtags.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.account_featured_tags(id: Account | str | int | MaybeSnowflakeIdType)→ NonPaginatableList[Tag]
Get an account’s featured hashtags.

Added: Mastodon v3.3.0, last changed: Mastodon v3.3.0

Mastodon.endorsements()→ NonPaginatableList[Account]
Fetch list of users endorsed by the logged-in user.

Added: Mastodon v2.5.0, last changed: Mastodon v2.5.0

Mastodon.account_statuses(id: Account | str | int | MaybeSnowflakeIdType, only_media: bool = False, pinned:
bool = False, exclude_replies: bool = False, exclude_reblogs: bool = False,
tagged: str | None = None, max_id: Status | str | int | MaybeSnowflakeIdType |
datetime | None = None, min_id: Status | str | int | MaybeSnowflakeIdType |
datetime | None = None, since_id: Status | str | int | MaybeSnowflakeIdType |
datetime | None = None, limit: int | None = None)→ PaginatableList[Status]

Fetch statuses by user id. Same options as timeline() are permitted. Returned toots are from the perspective of
the logged-in user, i.e. all statuses visible to the logged-in user (including DMs) are included.

If only_media is set, return only statuses with media attachments. If pinned is set, return only statuses that have
been pinned. Note that as of Mastodon 2.1.0, this only works properly for instance-local users. If exclude_replies

4.15. Every function on a huge CTRL-F-able page 73

mailto:username@domain
mailto:user@instance

Mastodon.py Documentation, Release 1.8.1

is set, filter out all statuses that are replies. If exclude_reblogs is set, filter out all statuses that are reblogs. If
tagged is set, return only statuses that are tagged with tagged. Only a single tag without a ‘#’ is valid.

Does not require authentication for Mastodon versions after 2.7.0 (returns publicly visible statuses in that case),
for publicly visible accounts.

Added: Mastodon v1.0.0, last changed: Mastodon v2.8.0

Mastodon.account_following(id: Account | str | int | MaybeSnowflakeIdType, max_id: Account | str | int |
MaybeSnowflakeIdType | None = None, min_id: Account | str | int |
MaybeSnowflakeIdType | None = None, since_id: Account | str | int |
MaybeSnowflakeIdType | None = None, limit: int | None = None)→
PaginatableList[Account]

Fetch users the given user is following.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0

Mastodon.account_familiar_followers(id: List[Account | str | int | MaybeSnowflakeIdType] | Account | str |
int | MaybeSnowflakeIdType)→
NonPaginatableList[FamiliarFollowers]

Find followers for the account given by id (can be a list) that also follow the logged in account.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.account_lists(id: Account | str | int | MaybeSnowflakeIdType)→ NonPaginatableList[UserList]
Get all of the logged-in user’s lists which the specified user is a member of.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.account_update_credentials(display_name: str | None = None, note: str | None = None, avatar: str
| PurePath | IO[bytes] | None = None, avatar_mime_type: str | None
= None, header: str | PurePath | IO[bytes] | None = None,
header_mime_type: str | None = None, locked: bool | None = None,
bot: bool | None = None, discoverable: bool | None = None, fields:
List[Tuple[str, str]] | None = None)→ Account

Update the profile for the currently logged-in user.

note is the user’s bio.

avatar and ‘header’ are images. As with media uploads, it is possible to either pass image data and a mime type,
or a filename of an image file, for either.

locked specifies whether the user needs to manually approve follow requests.

bot specifies whether the user should be set to a bot.

discoverable specifies whether the user should appear in the user directory.

fields can be a list of up to four name-value pairs (specified as tuples) to appear as semi-structured information
in the user’s profile.

The returned object reflects the updated account.

Added: Mastodon v1.1.1, last changed: Mastodon v3.1.0

Mastodon.account_pin(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Pin / endorse a user.

The returned object reflects the updated relationship with the user.

Added: Mastodon v2.5.0, last changed: Mastodon v2.5.0

74 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Mastodon.account_unpin(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Unpin / un-endorse a user.

The returned object reflects the updated relationship with the user.

Added: Mastodon v2.5.0, last changed: Mastodon v2.5.0

Mastodon.account_note_set(id: Account | str | int | MaybeSnowflakeIdType, comment: str)→ Account
Set a note (visible to the logged in user only) for the given account.

The returned object contains the updated note.

Added: Mastodon v3.2.0, last changed: Mastodon v3.2.0

Mastodon.featured_tag_create(name: str)→ FeaturedTag
Creates a new featured hashtag displayed on the logged-in user’s profile.

The returned object is the newly featured tag.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.featured_tag_delete(id: FeaturedTag | str | int | MaybeSnowflakeIdType)
Deletes one of the logged-in user’s featured hashtags.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.status_pin(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Pin a status for the logged-in user.

Returns the now pinned status

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.status_unpin(id: Status | str | int | MaybeSnowflakeIdType)→ Status
Unpin a pinned status for the logged-in user.

Returns the status that used to be pinned.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.account_followers(id: Account | str | int | MaybeSnowflakeIdType, max_id: Account | str | int |
MaybeSnowflakeIdType | None = None, min_id: Account | str | int |
MaybeSnowflakeIdType | None = None, since_id: Account | str | int |
MaybeSnowflakeIdType | None = None, limit: int | None = None)→
PaginatableList[Account]

Fetch users the given user is followed by.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0

Mastodon.account_relationships(id: List[Account | str | int | MaybeSnowflakeIdType] | Account | str | int |
MaybeSnowflakeIdType)→ NonPaginatableList[Relationship]

Fetch relationship (following, followed_by, blocking, follow requested) of the logged in user to a given account.
id can be a list.

Added: Mastodon v1.0.0, last changed: Mastodon v1.4.0

Mastodon.follows(uri: str)→ Relationship
Follow a remote user with username given in username@domain form.

Returns a account dict.

Deprecated - avoid using this. Currently uses a backwards compat implementation that may or may not work
properly.

4.15. Every function on a huge CTRL-F-able page 75

mailto:username@domain

Mastodon.py Documentation, Release 1.8.1

Added: Mastodon v1.0.0, last changed: Mastodon v2.1.0

Mastodon.follow_requests(max_id: str | int | MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int | MaybeSnowflakeIdType |
None = None, limit: int | None = None)→ PaginatableList[Account]

Fetch the logged-in user’s incoming follow requests.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0

Mastodon.suggestions()→ NonPaginatableList[Account]
Fetch follow suggestions for the logged-in user.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

Mastodon.account_follow(id: Account | str | int | MaybeSnowflakeIdType, reblogs: bool = True, notify: bool =
False)→ Relationship

Follow a user.

Set reblogs to False to hide boosts by the followed user. Set notify to True to get a notification every time the
followed user posts.

The returned object reflects the updated relationship with the user.

Added: Mastodon v1.0.0, last changed: Mastodon v3.3.0

Mastodon.account_unfollow(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Unfollow a user.

The returned object reflects the updated relationship with the user.

Added: Mastodon v1.0.0, last changed: Mastodon v1.4.0

Mastodon.follow_request_authorize(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Accept an incoming follow request from the given Account and returns the updated Relationship.

Added: Mastodon v1.0.0, last changed: Mastodon v3.0.0

Mastodon.follow_request_reject(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Reject an incoming follow request from the given Account and returns the updated Relationship.

Added: Mastodon v1.0.0, last changed: Mastodon v3.0.0

Mastodon.suggestion_delete(account_id: Account | str | int | MaybeSnowflakeIdType)
Remove the user with the given account_id from the follow suggestions.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

Mastodon.mutes(max_id: str | int | MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int | MaybeSnowflakeIdType | None =
None, limit: int | None = None)→ PaginatableList[Account]

Fetch a list of users muted by the logged-in user.

Added: Mastodon v1.1.0, last changed: Mastodon v2.6.0

Mastodon.blocks(max_id: str | int | MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int | MaybeSnowflakeIdType | None =
None, limit: int | None = None)→ PaginatableList[Account]

Fetch a list of users blocked by the logged-in user.

Added: Mastodon v1.0.0, last changed: Mastodon v2.6.0

76 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Mastodon.domain_blocks(max_id: str | int | MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int | MaybeSnowflakeIdType |
None = None, limit: int | None = None)→ PaginatableList[str]

Fetch the logged-in user’s blocked domains.

Returns a list of blocked domain URLs (as strings, without protocol specifier).

Added: Mastodon v1.4.0, last changed: Mastodon v2.6.0

Mastodon.account_mute(id: Account | str | int | MaybeSnowflakeIdType, notifications: bool = True, duration: int
| None = None)→ Relationship

Mute a user.

Set notifications to False to receive notifications even though the user is muted from timelines. Pass a duration
in seconds to have Mastodon automatically lift the mute after that many seconds.

The returned object reflects the updated relationship with the user.

Added: Mastodon v1.1.0, last changed: Mastodon v2.4.3

Mastodon.account_unmute(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Unmute a user.

The returned object reflects the updated relationship with the user.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.0

Mastodon.account_block(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Block a user.

The returned object reflects the updated relationship with the user.

Added: Mastodon v1.0.0, last changed: Mastodon v1.4.0

Mastodon.account_unblock(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Unblock a user.

The returned object reflects the updated relationship with the user.

Added: Mastodon v1.0.0, last changed: Mastodon v1.4.0

Mastodon.account_remove_from_followers(id: Account | str | int | MaybeSnowflakeIdType)→ Relationship
Remove a user from the logged in users followers (i.e. make them unfollow the logged in user / “softblock”
them).

The returned object reflects the updated relationship with the user.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.domain_block(domain: str)
Add a block for all statuses originating from the specified domain for the logged-in user.

Added: Mastodon v1.4.0, last changed: Mastodon v1.4.0

Mastodon.domain_unblock(domain: str)
Remove a domain block for the logged-in user.

Added: Mastodon v1.4.0, last changed: Mastodon v1.4.0

Mastodon.lists()→ NonPaginatableList[UserList]
Fetch a list of all the Lists by the logged-in user.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

4.15. Every function on a huge CTRL-F-able page 77

Mastodon.py Documentation, Release 1.8.1

Mastodon.list(id: UserList | str | int | MaybeSnowflakeIdType)→ UserList
Fetch info about a specific list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.list_accounts(id: UserList | str | int | MaybeSnowflakeIdType, max_id: UserList | str | int |
MaybeSnowflakeIdType | None = None, min_id: UserList | str | int |
MaybeSnowflakeIdType | None = None, since_id: UserList | str | int |
MaybeSnowflakeIdType | None = None, limit: int | None = None)→
PaginatableList[Account]

Get the accounts that are on the given list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.6.0

Mastodon.list_create(title: str)→ UserList
Create a new list with the given title.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.list_update(id: UserList | str | int | MaybeSnowflakeIdType, title: str)→ UserList
Update info about a list, where “info” is really the lists title.

The returned object reflects the updated list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.list_delete(id: UserList | str | int | MaybeSnowflakeIdType)
Delete a list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.list_accounts_add(id: UserList | str | int | MaybeSnowflakeIdType, account_ids: List[Account | str |
int | MaybeSnowflakeIdType])

Add the account(s) given in account_ids to the list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.list_accounts_delete(id: UserList | str | int | MaybeSnowflakeIdType, account_ids: List[Account |
str | int | MaybeSnowflakeIdType])

Remove the account(s) given in account_ids from the list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.timeline(timeline: str = 'home', max_id: Status | str | int | MaybeSnowflakeIdType | datetime | None =
None, min_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None, since_id:
Status | str | int | MaybeSnowflakeIdType | datetime | None = None, limit: int | None = None,
only_media: bool = False, local: bool = False, remote: bool = False)→
PaginatableList[Status]

Fetch statuses, most recent ones first. timeline can be ‘home’, ‘local’, ‘public’, ‘tag/hashtag’ or ‘list/id’. See the
following functions documentation for what those do.

The default timeline is the “home” timeline.

Specify only_media to only get posts with attached media. Specify local to only get local statuses, and remote
to only get remote statuses. Some options are mutually incompatible as dictated by logic.

May or may not require authentication depending on server settings and what is specifically requested.

Added: Mastodon v1.0.0, last changed: Mastodon v3.1.4

78 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Mastodon.timeline_home(max_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None, min_id:
Status | str | int | MaybeSnowflakeIdType | datetime | None = None, since_id: Status |
str | int | MaybeSnowflakeIdType | datetime | None = None, limit: int | None = None,
only_media: bool = False, local: bool = False, remote: bool = False)→
PaginatableList[Status]

Convenience method: Fetches the logged-in user’s home timeline (i.e. followed users and self). Params as in
timeline().

Added: Mastodon v1.0.0, last changed: Mastodon v3.1.4

Mastodon.timeline_local(max_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None, min_id:
Status | str | int | MaybeSnowflakeIdType | datetime | None = None, since_id: Status |
str | int | MaybeSnowflakeIdType | datetime | None = None, limit: int | None = None,
only_media: bool = False)→ PaginatableList[Status]

Convenience method: Fetches the local / instance-wide timeline, not including replies. Params as in timeline().

Added: Mastodon v1.0.0, last changed: Mastodon v3.1.4

Mastodon.timeline_public(max_id: Status | str | int | MaybeSnowflakeIdType | datetime | None = None, min_id:
Status | str | int | MaybeSnowflakeIdType | datetime | None = None, since_id: Status
| str | int | MaybeSnowflakeIdType | datetime | None = None, limit: int | None =
None, only_media: bool = False, local: bool = False, remote: bool = False)→
PaginatableList[Status]

Convenience method: Fetches the public / visible-network / federated timeline, not including replies. Params as
in timeline().

Added: Mastodon v1.0.0, last changed: Mastodon v3.1.4

Mastodon.timeline_hashtag(hashtag: str, local: bool = False, max_id: Status | str | int |
MaybeSnowflakeIdType | datetime | None = None, min_id: Status | str | int |
MaybeSnowflakeIdType | datetime | None = None, since_id: Status | str | int |
MaybeSnowflakeIdType | datetime | None = None, limit: int | None = None,
only_media: bool = False, remote: bool = False)→ PaginatableList[Status]

Convenience method: Fetch a timeline of toots with a given hashtag. The hashtag parameter should not contain
the leading #. Params as in timeline().

Added: Mastodon v1.0.0, last changed: Mastodon v3.1.4

Mastodon.timeline_list(id: UserList | str | int | MaybeSnowflakeIdType, max_id: Status | str | int |
MaybeSnowflakeIdType | datetime | None = None, min_id: Status | str | int |
MaybeSnowflakeIdType | datetime | None = None, since_id: Status | str | int |
MaybeSnowflakeIdType | datetime | None = None, limit: int | None = None,
only_media: bool = False, local: bool = False, remote: bool = False)→
PaginatableList[Status]

Convenience method: Fetches a timeline containing all the toots by users in a given list. Params as in timeline().

Added: Mastodon v2.1.0, last changed: Mastodon v3.1.4

Mastodon.instance()→ Instance | InstanceV2
Retrieve basic information about the instance, including the URI and administrative contact email.

Does not require authentication unless locked down by the administrator.

Returns an instance dict.

Added: Mastodon v1.1.0, last changed: Mastodon v4.0.0

4.15. Every function on a huge CTRL-F-able page 79

Mastodon.py Documentation, Release 1.8.1

Mastodon.instance_activity()→ NonPaginatableList[Activity]
Retrieve activity stats about the instance. May be disabled by the instance administrator - throws a Mastodon-
NotFoundError in that case.

Activity is returned for 12 weeks going back from the current week.

Added: Mastodon v2.1.2, last changed: Mastodon v2.1.2

Mastodon.instance_peers()→ NonPaginatableList[str]
Retrieve the instances that this instance knows about. May be disabled by the instance administrator - throws a
MastodonNotFoundError in that case.

Returns a list of URL strings.

Added: Mastodon v2.1.2, last changed: Mastodon v2.1.2

Mastodon.instance_health()→ bool
Basic health check. Returns True if healthy, False if not.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.instance_nodeinfo(schema: str = 'http://nodeinfo.diaspora.software/ns/schema/2.0')→ Nodeinfo |
AttribAccessDict

Retrieves the instance’s nodeinfo information.

For information on what the nodeinfo can contain, see the nodeinfo specification: https://github.com/jhass/
nodeinfo . By default, Mastodon.py will try to retrieve the version 2.0 schema nodeinfo, for which we have
a well defined return object. If you go outside of that, all bets are off.

To override the schema, specify the desired schema with the schema parameter.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.instance_rules()→ NonPaginatableList[Rule]
Retrieve instance rules.

Added: Mastodon v3.4.0, last changed: Mastodon v3.4.0

Mastodon.directory(offset: int | None = None, limit: int | None = None, order: str | None = None, local: bool |
None = None)→ NonPaginatableList[Account]

Fetch the contents of the profile directory, if enabled on the server.

offset how many accounts to skip before returning results. Default 0.

limit how many accounts to load. Default 40.

order “active” to sort by most recently posted statuses (usually the default) or
“new” to sort by most recently created profiles.

local True to return only local accounts.

Uses offset/limit pagination, not currently handled by the pagination utility functions, do it manually if you have
to.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.custom_emojis()→ NonPaginatableList[CustomEmoji]
Fetch the list of custom emoji the instance has installed.

Does not require authentication unless locked down by the administrator.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

80 Chapter 4. Research use and citing

https://github.com/jhass/nodeinfo
https://github.com/jhass/nodeinfo

Mastodon.py Documentation, Release 1.8.1

Mastodon.announcements()→ NonPaginatableList[Announcement]
Fetch currently active announcements.

Returns a list of announcement dicts.

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

Mastodon.announcement_dismiss(id: Announcement | str | int | MaybeSnowflakeIdType)
Set the given annoucement to read.

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

Mastodon.announcement_reaction_create(id: Announcement | str | int | MaybeSnowflakeIdType, reaction:
str)

Add a reaction to an announcement. reaction can either be a unicode emoji or the name of one of the instances
custom emoji.

Will throw an API error if the reaction name is not one of the allowed things or when trying to add a reaction
that the user has already added (adding a reaction that a different user added is legal and increments the count).

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

Mastodon.announcement_reaction_delete(id: Announcement | str | int | MaybeSnowflakeIdType, reaction:
str)

Remove a reaction to an announcement.

Will throw an API error if the reaction does not exist.

Added: Mastodon v3.1.0, last changed: Mastodon v3.1.0

Mastodon.trending_tags(limit: int | None = None, lang: str | None = None)→ NonPaginatableList[Tag]
Fetch trending-hashtag information, if the instance provides such information.

Specify limit to limit how many results are returned (the maximum number of results is 10, the endpoint is not
paginated).

Does not require authentication unless locked down by the administrator.

Important versioning note: This endpoint does not exist for Mastodon versions between 2.8.0 (inclusive) and
3.0.0 (exclusive).

Pass lang to override the global locale parameter, which may affect trend ordering.

The results are sorted by the instances’s trending algorithm, descending.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.trending_statuses(limit: int | None = None, offset: int | None = None, lang: str | None = None)→
NonPaginatableList[Status]

Fetch trending-status information, if the instance provides such information.

Specify limit to limit how many results are returned (default 20, the maximum number of results is 40).

Specify offset to paginate results. Default 0.

Pass lang to override the global locale parameter, which may affect trend ordering.

The results are sorted by the instances’s trending algorithm, descending.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

4.15. Every function on a huge CTRL-F-able page 81

Mastodon.py Documentation, Release 1.8.1

Mastodon.trending_links(limit: int | None = None, lang: str | None = None)→
NonPaginatableList[PreviewCard]

Fetch trending-link information, if the instance provides such information.

Specify limit to limit how many results are returned (the maximum number of results is 10, the endpoint is not
paginated).

The results are sorted by the instances’s trending algorithm, descending.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.trends(limit: int | None = None)
Old alias for trending_tags()

Deprecated. Please use trending_tags() instead.

Added: Mastodon v2.4.3, last changed: Mastodon v3.5.0

Mastodon.search(q: str, resolve: bool = True, result_type: str | None = None, account_id: Account | str | int |
MaybeSnowflakeIdType | None = None, offset: int | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, max_id: str | int | MaybeSnowflakeIdType | None =
None, exclude_unreviewed: bool = True)→ Search | SearchV2

Fetch matching hashtags, accounts and statuses. Will perform webfinger lookups if resolve is True. Full-text
search is only enabled if the instance supports it, and is restricted to statuses the logged-in user wrote or was
mentioned in.

result_type can be one of “accounts”, “hashtags” or “statuses”, to only search for that type of object.

Specify account_id to only get results from the account with that id.

offset, min_id and max_id can be used to paginate.

exclude_unreviewed can be used to restrict search results for hashtags to only those that have been reviewed by
moderators. It is on by default. When using the v1 search API (pre 2.4.1), it is ignored.

Will use search_v1 (no tag dicts in return values) on Mastodon versions before 2.4.1), search_v2 otherwise. Pa-
rameters other than resolve are only available on Mastodon 2.8.0 or above - this function will throw a Mastodon-
VersionError if you try to use them on versions before that. Note that the cached version number will be used for
this to avoid uneccesary requests.

Added: Mastodon v1.1.0, last changed: Mastodon v2.8.0

Mastodon.search_v2(q, resolve: bool = True, result_type: str | None = None, account_id: Account | str | int |
MaybeSnowflakeIdType | None = None, offset: int | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, max_id: str | int | MaybeSnowflakeIdType | None =
None, exclude_unreviewed: bool = True)→ SearchV2

Identical to search_v1(), except in that it returns tags as hashtag dicts, has more parameters, and resolves by
default.

For more details documentation, please see search()

Returns a search result dict.

Added: Mastodon v2.4.1, last changed: Mastodon v2.8.0

Mastodon.notifications(id: Notification | str | int | MaybeSnowflakeIdType | None = None, account_id: Account
| str | int | MaybeSnowflakeIdType | None = None, max_id: Notification | str | int |
MaybeSnowflakeIdType | None = None, min_id: Notification | str | int |
MaybeSnowflakeIdType | None = None, since_id: Notification | str | int |
MaybeSnowflakeIdType | None = None, limit: int | None = None, exclude_types:
List[str] | None = None, types: List[str] | None = None, mentions_only: bool | None =
None)→ PaginatableList[Notification]

82 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Fetch notifications (mentions, favourites, reblogs, follows) for the logged-in user. Pass account_id to get only
notifications originating from the given account.

There are different types of notifications:
• follow - A user followed the logged in user

• follow_request - A user has requested to follow the logged in user (for locked accounts)

• favourite - A user favourited a post by the logged in user

• reblog - A user reblogged a post by the logged in user

• mention - A user mentioned the logged in user

• poll - A poll the logged in user created or voted in has ended

• update - A status the logged in user has reblogged (and only those, as of 4.0.0) has been edited

• status - A user that the logged in user has enabned notifications for has enabled notify (see ac-
count_follow())

• admin.sign_up - For accounts with appropriate permissions (TODO: document which those are when
adding the permission API): A new user has signed up

• admin.report - For accounts with appropriate permissions (TODO: document which those are when
adding the permission API): A new report has been received

Parameters exclude_types and types are array of these types, specifying them will in- or exclude the types of
notifications given. It is legal to give both parameters at the same tine, the result will then be the intersection of
the results of both filters. Specifying mentions_only is a deprecated way to set exclude_types to all but mentions.

Can be passed an id to fetch a single notification.

Returns a list of notification dicts.

Added: Mastodon v1.0.0, last changed: Mastodon v3.5.0

Mastodon.notifications_clear()

Clear out a user’s notifications

Added: Mastodon v1.0.0, last changed: Mastodon v1.0.0

Mastodon.notifications_dismiss(id: Notification | str | int | MaybeSnowflakeIdType)
Deletes a single notification

Added: Mastodon v1.3.0, last changed: Mastodon v2.9.2

Mastodon.conversations_read(id: Conversation | str | int | MaybeSnowflakeIdType)
Marks a single conversation as read.

The returned object reflects the conversation’s new read status.

Added: Mastodon v2.6.0, last changed: Mastodon v2.6.0

Mastodon.filters()

Fetch all of the logged-in user’s filters.

Returns a list of filter dicts. Not paginated.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

4.15. Every function on a huge CTRL-F-able page 83

Mastodon.py Documentation, Release 1.8.1

Mastodon.filter(id)
Fetches information about the filter with the specified id.

Returns a filter dict.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

Mastodon.filters_apply(objects, filters, context)
Helper function: Applies a list of filters to a list of either statuses or notifications and returns only those matched
by none. This function will apply all filters that match the context provided in context, i.e. if you want to apply
only notification-relevant filters, specify ‘notifications’. Valid contexts are ‘home’, ‘notifications’, ‘public’ and
‘thread’.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

Mastodon.filter_create(phrase, context, irreversible=False, whole_word=True, expires_in=None)
Creates a new keyword filter. phrase is the phrase that should be filtered out, context specifies from where to
filter the keywords. Valid contexts are ‘home’, ‘notifications’, ‘public’ and ‘thread’.

Set irreversible to True if you want the filter to just delete statuses server side. This works only for the ‘home’
and ‘notifications’ contexts.

Set whole_word to False if you want to allow filter matches to start or end within a word, not only at word
boundaries.

Set expires_in to specify for how many seconds the filter should be kept around.

Returns the filter dict of the newly created filter.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

Mastodon.filter_update(id, phrase=None, context=None, irreversible=None, whole_word=None,
expires_in=None)

Updates the filter with the given id. Parameters are the same as in filter_create().

Returns the filter dict of the updated filter.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

Mastodon.filter_delete(id)
Deletes the filter with the given id.

Added: Mastodon v2.4.3, last changed: Mastodon v2.4.3

Mastodon.push_subscription()→ WebPushSubscription
Fetch the current push subscription the logged-in user has for this app.

Only one webpush subscription can be active at a time for any given app.

Added: Mastodon v2.4.0, last changed: Mastodon v2.4.0

Mastodon.push_subscription_set(endpoint: str, encrypt_params: Dict[str, str], follow_events: bool | None =
None, favourite_events: bool | None = None, reblog_events: bool | None =
None, mention_events: bool | None = None, poll_events: bool | None =
None, follow_request_events: bool | None = None, status_events: bool |
None = None, policy: str = 'all', update_events: bool | None = None,
admin_sign_up_events: bool | None = None, admin_report_events: bool |
None = None)→ WebPushSubscription

Sets up or modifies the push subscription the logged-in user has for this app.

endpoint is the endpoint URL mastodon should call for pushes. Note that mastodon requires https for this
URL. encrypt_params is a dict with key parameters that allow the server to encrypt data for you: A public

84 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

key pubkey and a shared secret auth. You can generate this as well as the corresponding private key using the
push_subscription_generate_keys() function.

policy controls what sources will generate webpush events. Valid values are all, none, follower and followed.

The rest of the parameters controls what kind of events you wish to subscribe to. Events whose names start with
“admin” require admin privileges to subscribe to.

• follow_events controls whether you receive events when someone follows the logged in user.

• favourite_events controls whether you receive events when someone favourites one of the logged in users
statuses.

• reblog_events controls whether you receive events when someone boosts one of the logged in users statuses.

• mention_events controls whether you receive events when someone mentions the logged in user in a status.

• poll_events controls whether you receive events when a poll the logged in user has voted in has ended.

• follow_request_events controls whether you receive events when someone requests to follow the logged in
user.

• status_events controls whether you receive events when someone the logged in user has subscribed to
notifications for posts a new status.

• update_events controls whether you receive events when a status that the logged in user has boosted has
been edited.

• admin_sign_up_events controls whether you receive events when a new user signs up.

• admin_report_events controls whether you receive events when a new report is received.

Returns a push subscription dict.

Added: Mastodon v2.4.0, last changed: Mastodon v4..0

Mastodon.push_subscription_update(follow_events: bool | None = None, favourite_events: bool | None =
None, reblog_events: bool | None = None, mention_events: bool | None
= None, poll_events: bool | None = None, follow_request_events: bool |
None = None, status_events: bool | None = None, policy: str | None =
'all', update_events: bool | None = None, admin_sign_up_events: bool |
None = None, admin_report_events: bool | None = None)→
WebPushSubscription

Modifies what kind of events the app wishes to subscribe to.

Parameters are as in push_subscription_create().

Returned object reflects the updated push subscription.

Added: Mastodon v2.4.0, last changed: Mastodon v2.4.0

Mastodon.push_subscription_generate_keys()→ Tuple[Dict[str, str], Dict[str, str]]
Generates a private key, public key and shared secret for use in webpush subscriptions.

Returns two dicts: One with the private key and shared secret and another with the public key and shared secret.

Mastodon.push_subscription_decrypt_push(data: bytes, decrypt_params: Dict[str, str], encryption_header:
str, crypto_key_header: str)→ PushNotification

Decrypts data received in a webpush request. Requires the private key dict from
push_subscription_generate_keys() (decrypt_params) as well as the Encryption and server Crypto-Key
headers from the received webpush

Added: Mastodon v2.4.0, last changed: Mastodon v2.4.0

4.15. Every function on a huge CTRL-F-able page 85

Mastodon.py Documentation, Release 1.8.1

Mastodon.stream_user(listener, run_async=False, timeout=300, reconnect_async=False,
reconnect_async_wait_sec=5)

Streams events that are relevant to the authorized user, i.e. home timeline and notifications.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.2

Mastodon.stream_public(listener, run_async=False, timeout=300, reconnect_async=False,
reconnect_async_wait_sec=5, local=False, remote=False)

Streams public events.

Set local to True to only get local statuses. Set remote to True to only get remote statuses.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.2

Mastodon.stream_local(listener, run_async=False, timeout=300, reconnect_async=False,
reconnect_async_wait_sec=5)

Streams local public events.

This function is deprecated. Please use stream_public() with parameter local set to True instead.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.2

Mastodon.stream_hashtag(tag, listener, local=False, run_async=False, timeout=300, reconnect_async=False,
reconnect_async_wait_sec=5)

Stream for all public statuses for the hashtag ‘tag’ seen by the connected instance.

Set local to True to only get local statuses.

Added: Mastodon v1.1.0, last changed: Mastodon v1.4.2

Mastodon.stream_list(id, listener, run_async=False, timeout=300, reconnect_async=False,
reconnect_async_wait_sec=5)

Stream events for the current user, restricted to accounts on the given list.

Added: Mastodon v2.1.0, last changed: Mastodon v2.1.0

Mastodon.stream_healthy()→ bool
Returns without True if streaming API is okay, False or raises an error otherwise.

Added: Mastodon v2.5.0, last changed: Mastodon v2.5.0

class mastodon.StreamListener

Callbacks for the streaming API. Create a subclass, override the on_xxx methods for the kinds of events you’re
interested in, then pass an instance of your subclass to Mastodon.user_stream(), Mastodon.public_stream(), or
Mastodon.hashtag_stream().

StreamListener.on_update(status)
A new status has appeared. status is the parsed status dict describing the status.

StreamListener.on_notification(notification)
A new notification. notification is the parsed notification dict describing the notification.

StreamListener.on_delete(status_id)
A status has been deleted. status_id is the status’ integer ID.

StreamListener.on_conversation(conversation)
A direct message (in the direct stream) has been received. conversation is the parsed conversation dict dictionary
describing the conversation

86 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

StreamListener.on_status_update(status)
A status has been edited. ‘status’ is the parsed JSON dictionary describing the updated status.

StreamListener.on_unknown_event(name, unknown_event=None)
An unknown mastodon API event has been received. The name contains the event-name and unknown_event
contains the content of the unknown event.

StreamListener.on_abort(err)
There was a connection error, read timeout or other error fatal to the streaming connection. The exception object
about to be raised is passed to this function for reference.

Note that the exception will be raised properly once you return from this function, so if you are using this handler
to reconnect, either never return or start a thread and then catch and ignore the exception.

StreamListener.handle_heartbeat()

The server has sent us a keep-alive message. This callback may be useful to carry out periodic housekeeping
tasks, or just to confirm that the connection is still open.

Mastodon.markers_get(timeline: str | List[str] = ['home'])→ Dict[str, Marker]
Get the last-read-location markers for the specified timelines. Valid timelines are the same as in timeline()

Note that despite the singular name, timeline can be a list.

Returns a dict with the markers, keyed by timeline name.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.markers_set(timelines: str | List[str], last_read_ids: Status | str | int | MaybeSnowflakeIdType |
List[Status] | List[str | int | MaybeSnowflakeIdType])→ Dict[str, Marker]

Set the “last read” marker(s) for the given timeline(s) to the given id(s)

Note that if you give an invalid timeline name, this will silently do nothing.

Returns a dict with the updated markers, keyed by timeline name.

Added: Mastodon v3.0.0, last changed: Mastodon v3.0.0

Mastodon.reports()→ NonPaginatableList[Report]
Fetch a list of reports made by the logged-in user.

Warning: This method has now finally been removed, and will not work on Mastodon versions 2.5.0 and above.

Added: Mastodon v1.1.0, last changed: Mastodon v1.1.0

Mastodon.fetch_next(previous_page: PaginatableList)→ PaginatableList | None
Fetches the next page of results of a paginated request. Pass in the previous page in its entirety, or the pagination
information dict returned as a part of that pages last status (‘_pagination_next’).

Returns the next page or None if no further data is available.

Mastodon.fetch_previous(next_page: PaginatableList)→ PaginatableList | None
Fetches the previous page of results of a paginated request. Pass in the previous page in its entirety, or the
pagination information dict returned as a part of that pages first status (‘_pagination_prev’).

Returns the previous page or None if no further data is available.

Mastodon.fetch_remaining(first_page)
Fetches all the remaining pages of a paginated request starting from a first page and returns the entire set of
results (including the first page that was passed in) as a big list.

Be careful, as this might generate a lot of requests, depending on what you are fetching, and might cause you to
run into rate limits very quickly.

4.15. Every function on a huge CTRL-F-able page 87

Mastodon.py Documentation, Release 1.8.1

Mastodon.decode_blurhash(media_dict, out_size=(16, 16), size_per_component=True, return_linear=True)
Basic media-dict blurhash decoding.

out_size is the desired result size in pixels, either absolute or per blurhash component (this is the default).

By default, this function will return the image as linear RGB, ready for further scaling operations. If you want
to display the image directly, set return_linear to False.

Returns the decoded blurhash image as a three-dimensional list: [height][width][3], with the last dimension being
RGB colours.

For further info and tips for advanced usage, refer to the documentation for the blurhash module: https://github.
com/halcy/blurhash-python

Mastodon.admin_accounts_v2(origin: str | None = None, by_domain: str | None = None, status: str | None =
None, username: str | None = None, display_name: str | None = None, email: str
| None = None, ip: str | None = None, permissions: str | None = None,
invited_by: Account | str | int | MaybeSnowflakeIdType = None, role_ids: List[str
| int | MaybeSnowflakeIdType] | None = None, max_id: str | int |
MaybeSnowflakeIdType | None = None, min_id: str | int | MaybeSnowflakeIdType
| None = None, since_id: str | int | MaybeSnowflakeIdType | None = None, limit:
int | None = None)→ AdminAccount

Fetches a list of accounts that match given criteria. By default, local accounts are returned.

• Set origin to “local” or “remote” to get only local or remote accounts.

• Set by_domain to a domain to get only accounts from that domain.

• Set status to one of “active”, “pending”, “disabled”, “silenced” or “suspended” to get only accounts with
that moderation status (default: active)

• Set username to a string to get only accounts whose username contains this string.

• Set display_name to a string to get only accounts whose display name contains this string.

• Set email to an email to get only accounts with that email (this only works on local accounts).

• Set ip to an ip (as a string, standard v4/v6 notation) to get only accounts whose last active ip is that ip (this
only works on local accounts).

• Set permissions to “staff” to only get accounts with staff permissions.

• Set invited_by to an account id to get only accounts invited by this user.

• Set role_ids to a list of role IDs to get only accounts with those roles.

Returns a list of admin account dicts.

Pagination on this is a bit weird, so I would recommend not doing that and instead manually fetching.

Added: Mastodon v2.9.1, last changed: Mastodon v4.0.0

Mastodon.admin_accounts(remote: bool = False, by_domain: str | None = None, status: str = 'active', username:
str | None = None, display_name: str | None = None, email: str | None = None, ip:
str | None = None, staff_only: bool = False, max_id: str | int | MaybeSnowflakeIdType
| None = None, min_id: str | int | MaybeSnowflakeIdType | None = None, since_id:
str | int | MaybeSnowflakeIdType | None = None, limit: int | None = None)

Currently a synonym for admin_accounts_v1, now deprecated. You are strongly encouraged to use ad-
min_accounts_v2 instead, since this one is kind of bad.

!!!!! This function may be switched to calling the v2 API in the future. This is your warning. If you want to keep
using v1, use it explicitly. !!!!!

Pagination on this is a bit weird, so I would recommend not doing that and instead manually fetching.

88 Chapter 4. Research use and citing

https://github.com/halcy/blurhash-python
https://github.com/halcy/blurhash-python

Mastodon.py Documentation, Release 1.8.1

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_accounts_v1(remote: bool = False, by_domain: str | None = None, status: str = 'active',
username: str | None = None, display_name: str | None = None, email: str | None
= None, ip: str | None = None, staff_only: bool = False, max_id: str | int |
MaybeSnowflakeIdType | None = None, min_id: str | int | MaybeSnowflakeIdType
| None = None, since_id: str | int | MaybeSnowflakeIdType | None = None, limit:
int | None = None)→ AdminAccount

Fetches a list of accounts that match given criteria. By default, local accounts are returned.

• Set remote to True to get remote accounts, otherwise local accounts are returned (default: local accounts)

• Set by_domain to a domain to get only accounts from that domain.

• Set status to one of “active”, “pending”, “disabled”, “silenced” or “suspended” to get only accounts with
that moderation status (default: active)

• Set username to a string to get only accounts whose username contains this string.

• Set display_name to a string to get only accounts whose display name contains this string.

• Set email to an email to get only accounts with that email (this only works on local accounts).

• Set ip to an ip (as a string, standard v4/v6 notation) to get only accounts whose last active ip is that ip (this
only works on local accounts).

• Set staff_only to True to only get staff accounts (this only works on local accounts).

Note that setting the boolean parameters to False does not mean “give me users to which this does not apply” but
instead means “I do not care if users have this attribute”.

Deprecated in Mastodon version 3.5.0.

Returns a list of admin account dicts.

Pagination on this is a bit weird, so I would recommend not doing that and instead manually fetching.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_account(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType)→ AdminAccount
Fetches a single admin account dict for the user with the given id.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_account_enable(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType)→
AdminAccount

Reenables login for a local account for which login has been disabled.

The returned object reflects the updates to the account.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_account_approve(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType)→
AdminAccount

Approves a pending account.

The returned object reflects the updates to the account.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_account_reject(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType)→
AdminAccount

4.15. Every function on a huge CTRL-F-able page 89

Mastodon.py Documentation, Release 1.8.1

Rejects and deletes a pending account.

The returned object is that of the now-deleted account.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_account_unsilence(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType)→
AdminAccount

Unsilences an account.

The returned object reflects the updates to the account.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_account_unsuspend(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType)→
AdminAccount

Unsuspends an account.

The returned object reflects the updates to the account.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_account_moderate(id: Account | AdminAccount | str | int | MaybeSnowflakeIdType, action: str
| None = None, report_id: AdminReport | str | int | None = None,
warning_preset_id: str | int | None = None, text: str | None = None,
send_email_notification: bool | None = True)

Perform a moderation action on an account.

Valid actions are:
• “disable” - for a local user, disable login.

• “silence” - hide the users posts from all public timelines.

• “suspend” - irreversibly delete all the user’s posts, past and future.

• “sensitive” - forcce an accounts media visibility to always be sensitive.

If no action is specified, the user is only issued a warning.

Specify the id of a report as report_id to close the report with this moderation action as the resolution. Specify
warning_preset_id to use a warning preset as the notification text to the user, or text to specify text directly. If
both are specified, they are concatenated (preset first). Note that there is currently no API to retrieve or create
warning presets.

Set send_email_notification to False to not send the user an email notification informing them of the moderation
action.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_reports(resolved: bool | None = False, account_id: Account | AdminAccount | str | int |
MaybeSnowflakeIdType | None = None, target_account_id: Account | AdminAccount |
str | int | MaybeSnowflakeIdType | None = None, max_id: str | int |
MaybeSnowflakeIdType | None = None, min_id: str | int | MaybeSnowflakeIdType |
None = None, since_id: str | int | MaybeSnowflakeIdType | None = None, limit: int |
None = None)→ PaginatableList[AdminReport]

Fetches the list of reports.

Set resolved to True to search for resolved reports. account_id and target_account_id can be used to get reports
filed by or about a specific user.

Returns a list of report dicts.

90 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_report(id: AdminReport | str | int | MaybeSnowflakeIdType)→ AdminReport
Fetches the report with the given id.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_report_assign(id: AdminReport | str | int | MaybeSnowflakeIdType)→ AdminReport
Assigns the given report to the logged-in user.

The returned object reflects the updates to the report.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_report_unassign(id: AdminReport | str | int | MaybeSnowflakeIdType)→ AdminReport
Unassigns the given report from the logged-in user.

The returned object reflects the updates to the report.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_report_reopen(id: AdminReport | str | int | MaybeSnowflakeIdType)→ AdminReport
Reopens a closed report.

The returned object reflects the updates to the report.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_report_resolve(id: AdminReport | str | int | MaybeSnowflakeIdType)→ AdminReport
Marks a report as resolved (without taking any action).

The returned object reflects the updates to the report.

Added: Mastodon v2.9.1, last changed: Mastodon v2.9.1

Mastodon.admin_trending_tags(limit: int | None = None)→ NonPaginatableList[Tag]
Admin version of trending_tags(). Includes unapproved tags.

The returned list is sorted, descending, by the instance’s trending algorithm.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.admin_trending_statuses()→ NonPaginatableList[Status]
Admin version of trending_statuses(). Includes unapproved tags.

The returned list is sorted, descending, by the instance’s trending algorithm.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.admin_trending_links()→ NonPaginatableList[PreviewCard]
Admin version of trending_links(). Includes unapproved tags.

The returned list is sorted, descending, by the instance’s trending algorithm.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.admin_domain_blocks(id: str | int | MaybeSnowflakeIdType | None = None, max_id: str | int |
MaybeSnowflakeIdType | None = None, min_id: str | int |
MaybeSnowflakeIdType | None = None, since_id: str | int |
MaybeSnowflakeIdType | None = None, limit: int | None = None)→
AdminDomainBlock | PaginatableList[AdminDomainBlock]

Fetches a list of blocked domains. Requires scope admin:read:domain_blocks.

Provide an id to fetch a specific domain block based on its database id.

4.15. Every function on a huge CTRL-F-able page 91

Mastodon.py Documentation, Release 1.8.1

Returns a list of admin domain block dicts, raises a MastodonAPIError if the specified block does not exist.

Added: Mastodon v4.0.0, last changed: Mastodon v4.0.0

Mastodon.admin_create_domain_block(domain: str, severity: str | None = None, reject_media: bool | None =
None, reject_reports: bool | None = None, private_comment: str | None
= None, public_comment: str | None = None, obfuscate: bool | None =
None)→ AdminDomainBlock

Perform a moderation action on a domain. Requires scope admin:write:domain_blocks.

Valid severities are:
• “silence” - hide all posts from federated timelines and do not show notifications to local users from the

remote instance’s users unless they are following the remote user.

• “suspend” - deny interactions with this instance going forward. This action is reversible.

• “limit” - generally used with reject_media=true to force reject media from an instance without silencing
or suspending..

If no action is specified, the domain is only silenced. domain is the domain to block. Note that using the top
level domain will also imapct all subdomains. ie, example.com will also impact subdomain.example.com. re-
ject_media will not download remote media on to your local instance media storage. reject_reports ignores
all reports from the remote instance. private_comment sets a private admin comment for the domain. pub-
lic_comment sets a publicly available comment for this domain, which will be available to local users and may
be available to everyone depending on your settings. obfuscate censors some part of the domain name. Useful if
the domain name contains unwanted words like slurs.

Returns the new domain block as an admin domain block dict.

Added: Mastodon v4.0.0, last changed: Mastodon v4.0.0

Mastodon.admin_update_domain_block(id, severity: str | None = None, reject_media: bool | None = None,
reject_reports: bool | None = None, private_comment: str | None =
None, public_comment: str | None = None, obfuscate: bool | None =
None)→ AdminDomainBlock

Modify existing moderation action on a domain. Requires scope admin:write:domain_blocks.

Valid severities are:
• “silence” - hide all posts from federated timelines and do not show notifications to local users from the

remote instance’s users unless they are following the remote user.

• “suspend” - deny interactions with this instance going forward. This action is reversible.

• “limit” - generally used with reject_media=true to force reject media from an instance without silencing
or suspending.

If no action is specified, the domain is only silenced. domain is the domain to block. Note that using the top
level domain will also imapct all subdomains. ie, example.com will also impact subdomain.example.com. re-
ject_media will not download remote media on to your local instance media storage. reject_reports ignores
all reports from the remote instance. private_comment sets a private admin comment for the domain. pub-
lic_comment sets a publicly available comment for this domain, which will be available to local users and may
be available to everyone depending on your settings. obfuscate censors some part of the domain name. Useful if
the domain name contains unwanted words like slurs.

Returns the modified domain block as an admin domain block dict, raises a MastodonAPIError if the specified
block does not exist.

Added: Mastodon v4.0.0, last changed: Mastodon v4.0.0

92 Chapter 4. Research use and citing

Mastodon.py Documentation, Release 1.8.1

Mastodon.admin_delete_domain_block(id=typing.Union[mastodon.types.AdminDomainBlock, str, int,
mastodon.types_base.MaybeSnowflakeIdType])

Removes moderation action against a given domain. Requires scope admin:write:domain_blocks.

Provide an id to remove a specific domain block based on its database id.

Raises a MastodonAPIError if the specified block does not exist.

Added: Mastodon v4.0.0, last changed: Mastodon v4.0.0

Mastodon.admin_measures(start_at, end_at, active_users: bool = False, new_users: bool = False, interactions:
bool = False, opened_reports: bool = False, resolved_reports: bool = False,
tag_accounts: Tag | str | int | MaybeSnowflakeIdType | None = None, tag_uses: Tag |
str | int | MaybeSnowflakeIdType | None = None, tag_servers: Tag | str | int |
MaybeSnowflakeIdType | None = None, instance_accounts: str | None = None,
instance_media_attachments: str | None = None, instance_reports: str | None =
None, instance_statuses: str | None = None, instance_follows: str | None = None,
instance_followers: str | None = None)→ NonPaginatableList[AdminMeasure]

Retrieves numerical instance information for the time period (at day granularity) between start_at and end_at.

• active_users: Pass true to retrieve the number of active users on your instance within the time period

• new_users: Pass true to retrieve the number of users who joined your instance within the time period

• interactions: Pass true to retrieve the number of interactions (favourites, boosts, replies) on local statuses
within the time period

• opened_reports: Pass true to retrieve the number of reports filed within the time period

• resolved_reports = Pass true to retrieve the number of reports resolved within the time period

• tag_accounts: Pass a tag ID to get the number of accounts which used that tag in at least one status within
the time period

• tag_uses: Pass a tag ID to get the number of statuses which used that tag within the time period

• tag_servers: Pass a tag ID to to get the number of remote origin servers for statuses which used that tag
within the time period

• instance_accounts: Pass a domain to get the number of accounts originating from that remote domain
within the time period

• instance_media_attachments: Pass a domain to get the amount of space used by media attachments from
that remote domain within the time period

• instance_reports: Pass a domain to get the number of reports filed against accounts from that remote domain
within the time period

• instance_statuses: Pass a domain to get the number of statuses originating from that remote domain within
the time period

• instance_follows: Pass a domain to get the number of accounts from a remote domain followed by that local
user within the time period

• instance_followers: Pass a domain to get the number of local accounts followed by accounts from that
remote domain within the time period

This API call is relatively expensive - watch your servers load if you want to get a lot of statistical data. Especially
the instance_statuses stats might take a long time to compute and, in fact, time out.

There is currently no way to get tag IDs implemented in Mastodon.py, because the Mastodon public API does
not implement one. This will be fixed in a future release.

Returns a list of admin measure dicts.

4.15. Every function on a huge CTRL-F-able page 93

Mastodon.py Documentation, Release 1.8.1

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.admin_dimensions(start_at: datetime, end_at: datetime, limit: int | None = None, languages: bool =
False, sources: bool = False, servers: bool = False, space_usage: bool = False,
software_versions: bool = False, tag_servers: Tag | str | int |
MaybeSnowflakeIdType | None = None, tag_languages: Tag | str | int |
MaybeSnowflakeIdType | None = None, instance_accounts: str | None = None,
instance_languages: str | None = None)→ NonPaginatableList[AdminDimension]

Retrieves primarily categorical instance information for the time period (at day granularity) between start_at and
end_at.

• languages: Pass true to get the most-used languages on this server

• sources: Pass true to get the most-used client apps on this server

• servers: Pass true to get the remote servers with the most statuses

• space_usage: Pass true to get the how much space is used by different components your software stack

• software_versions: Pass true to get the version numbers for your software stack

• tag_servers: Pass a tag ID to get the most-common servers for statuses including a trending tag

• tag_languages: Pass a tag ID to get the most-used languages for statuses including a trending tag

• instance_accounts: Pass a domain to get the most-followed accounts from a remote server

• instance_languages: Pass a domain to get the most-used languages from a remote server

Pass limit to set how many results you want on queries where that makes sense.

This API call is relatively expensive - watch your servers load if you want to get a lot of statistical data.

There is currently no way to get tag IDs implemented in Mastodon.py, because the Mastodon public API does
not implement one. This will be fixed in a future release.

Returns a list of admin dimension dicts.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

Mastodon.admin_retention(start_at: datetime, end_at: datetime, frequency: str = 'day')→
NonPaginatableList[AdminRetention]

Gets user retention statistics (at frequency - “day” or “month” - granularity) between start_at and end_at.

Added: Mastodon v3.5.0, last changed: Mastodon v3.5.0

94 Chapter 4. Research use and citing

PYTHON MODULE INDEX

m
mastodon, ??

95

Mastodon.py Documentation, Release 1.8.1

96 Python Module Index

INDEX

Symbols
__init__() (mastodon.Mastodon method), 26, 65

A
account() (mastodon.Mastodon method), 35, 73
account_block() (mastodon.Mastodon method), 40, 77
account_familiar_followers()

(mastodon.Mastodon method), 36, 74
account_featured_tags() (mastodon.Mastodon

method), 35, 73
account_follow() (mastodon.Mastodon method), 39,

76
account_followers() (mastodon.Mastodon method),

38, 75
account_following() (mastodon.Mastodon method),

38, 74
account_lists() (mastodon.Mastodon method), 36, 74
account_lookup() (mastodon.Mastodon method), 35,

73
account_mute() (mastodon.Mastodon method), 40, 77
account_note_set() (mastodon.Mastodon method),

37, 75
account_pin() (mastodon.Mastodon method), 37, 74
account_relationships() (mastodon.Mastodon

method), 38, 75
account_remove_from_followers()

(mastodon.Mastodon method), 40, 77
account_search() (mastodon.Mastodon method), 35,

73
account_statuses() (mastodon.Mastodon method),

36, 73
account_unblock() (mastodon.Mastodon method), 40,

77
account_unfollow() (mastodon.Mastodon method),

39, 76
account_unmute() (mastodon.Mastodon method), 40,

77
account_unpin() (mastodon.Mastodon method), 37, 74
account_update_credentials()

(mastodon.Mastodon method), 36, 74
account_verify_credentials()

(mastodon.Mastodon method), 35, 72

admin_account() (mastodon.Mastodon method), 58, 89
admin_account_approve() (mastodon.Mastodon

method), 58, 89
admin_account_enable() (mastodon.Mastodon

method), 58, 89
admin_account_moderate() (mastodon.Mastodon

method), 58, 90
admin_account_reject() (mastodon.Mastodon

method), 58, 89
admin_account_unsilence() (mastodon.Mastodon

method), 58, 90
admin_account_unsuspend() (mastodon.Mastodon

method), 58, 90
admin_accounts() (mastodon.Mastodon method), 57,

88
admin_accounts_v1() (mastodon.Mastodon method),

57, 89
admin_accounts_v2() (mastodon.Mastodon method),

56, 88
admin_create_domain_block() (mastodon.Mastodon

method), 61, 92
admin_delete_domain_block() (mastodon.Mastodon

method), 61, 92
admin_dimensions() (mastodon.Mastodon method),

63, 94
admin_domain_blocks() (mastodon.Mastodon

method), 60, 91
admin_measures() (mastodon.Mastodon method), 62,

93
admin_report() (mastodon.Mastodon method), 59, 91
admin_report_assign() (mastodon.Mastodon

method), 59, 91
admin_report_reopen() (mastodon.Mastodon

method), 60, 91
admin_report_resolve() (mastodon.Mastodon

method), 60, 91
admin_report_unassign() (mastodon.Mastodon

method), 59, 91
admin_reports() (mastodon.Mastodon method), 59, 90
admin_retention() (mastodon.Mastodon method), 63,

94
admin_trending_links() (mastodon.Mastodon

97

Mastodon.py Documentation, Release 1.8.1

method), 60, 91
admin_trending_statuses() (mastodon.Mastodon

method), 60, 91
admin_trending_tags() (mastodon.Mastodon

method), 60, 91
admin_update_domain_block() (mastodon.Mastodon

method), 61, 92
announcement_dismiss() (mastodon.Mastodon

method), 45, 81
announcement_reaction_create()

(mastodon.Mastodon method), 45, 81
announcement_reaction_delete()

(mastodon.Mastodon method), 45, 81
announcements() (mastodon.Mastodon method), 45, 80
app_verify_credentials() (mastodon.Mastodon

method), 25, 65
auth_request_url() (mastodon.Mastodon method),

27, 66

B
blocks() (mastodon.Mastodon method), 39, 76
bookmarks() (mastodon.Mastodon method), 30, 68

C
CallbackStreamListener (class in mastodon), 54
conversations() (mastodon.Mastodon method), 43
conversations_read() (mastodon.Mastodon method),

48, 83
create_account() (mastodon.Mastodon method), 27,

66
create_app() (mastodon.Mastodon static method), 25,

64
custom_emojis() (mastodon.Mastodon method), 44, 80

D
decode_blurhash() (mastodon.Mastodon method), 56,

87
directory() (mastodon.Mastodon method), 44, 80
domain_block() (mastodon.Mastodon method), 40, 77
domain_blocks() (mastodon.Mastodon method), 39, 76
domain_unblock() (mastodon.Mastodon method), 40,

77

E
email_resend_confirmation() (mastodon.Mastodon

method), 28, 67
endorsements() (mastodon.Mastodon method), 35, 73

F
favourites() (mastodon.Mastodon method), 29, 68
featured_tag_create() (mastodon.Mastodon

method), 37, 75
featured_tag_delete() (mastodon.Mastodon

method), 37, 75

featured_tag_suggestions() (mastodon.Mastodon
method), 35, 73

featured_tags() (mastodon.Mastodon method), 35, 73
fetch_next() (mastodon.Mastodon method), 55, 87
fetch_previous() (mastodon.Mastodon method), 55,

87
fetch_remaining() (mastodon.Mastodon method), 55,

87
filter() (mastodon.Mastodon method), 48, 83
filter_create() (mastodon.Mastodon method), 49, 84
filter_delete() (mastodon.Mastodon method), 49, 84
filter_update() (mastodon.Mastodon method), 49, 84
filters() (mastodon.Mastodon method), 48, 83
filters_apply() (mastodon.Mastodon method), 48, 84
follow_request_authorize() (mastodon.Mastodon

method), 39, 76
follow_request_reject() (mastodon.Mastodon

method), 39, 76
follow_requests() (mastodon.Mastodon method), 38,

76
follows() (mastodon.Mastodon method), 38, 75

H
handle_heartbeat() (mastodon.StreamListener

method), 53, 87

I
instance() (mastodon.Mastodon method), 43, 79
instance_activity() (mastodon.Mastodon method),

43, 79
instance_health() (mastodon.Mastodon method), 43,

80
instance_nodeinfo() (mastodon.Mastodon method),

43, 80
instance_peers() (mastodon.Mastodon method), 43,

80
instance_rules() (mastodon.Mastodon method), 44,

80

L
list() (mastodon.Mastodon method), 41, 77
list_accounts() (mastodon.Mastodon method), 41, 78
list_accounts_add() (mastodon.Mastodon method),

41, 78
list_accounts_delete() (mastodon.Mastodon

method), 41, 78
list_create() (mastodon.Mastodon method), 41, 78
list_delete() (mastodon.Mastodon method), 41, 78
list_update() (mastodon.Mastodon method), 41, 78
lists() (mastodon.Mastodon method), 41, 77
log_in() (mastodon.Mastodon method), 26, 66

M
make_poll() (mastodon.Mastodon method), 31, 70

98 Index

Mastodon.py Documentation, Release 1.8.1

markers_get() (mastodon.Mastodon method), 54, 87
markers_set() (mastodon.Mastodon method), 54, 87
mastodon

module, 1, 7, 10, 24, 25, 28, 35, 42, 43, 47, 51, 54–
56, 64

me() (mastodon.Mastodon method), 35, 72
media_post() (mastodon.Mastodon method), 33, 72
media_update() (mastodon.Mastodon method), 34, 72
module

mastodon, 1, 7, 10, 24, 25, 28, 35, 42, 43, 47, 51,
54–56, 64

mutes() (mastodon.Mastodon method), 39, 76

N
notifications() (mastodon.Mastodon method), 47, 82
notifications_clear() (mastodon.Mastodon

method), 48, 83
notifications_dismiss() (mastodon.Mastodon

method), 48, 83

O
on_abort() (mastodon.StreamListener method), 53, 87
on_conversation() (mastodon.StreamListener

method), 53, 86
on_delete() (mastodon.StreamListener method), 53, 86
on_notification() (mastodon.StreamListener

method), 53, 86
on_status_update() (mastodon.StreamListener

method), 53, 86
on_unknown_event() (mastodon.StreamListener

method), 53, 87
on_update() (mastodon.StreamListener method), 53, 86

P
poll() (mastodon.Mastodon method), 34, 72
poll_vote() (mastodon.Mastodon method), 34
preferences() (mastodon.Mastodon method), 28
push_subscription() (mastodon.Mastodon method),

49, 84
push_subscription_decrypt_push()

(mastodon.Mastodon method), 51, 85
push_subscription_generate_keys()

(mastodon.Mastodon method), 50, 85
push_subscription_set() (mastodon.Mastodon

method), 49, 84
push_subscription_update() (mastodon.Mastodon

method), 50, 85

R
ratelimit_lastcall (mastodon.Mastodon attribute), 7
ratelimit_limit (mastodon.Mastodon attribute), 7
ratelimit_remaining (mastodon.Mastodon attribute),

7

ratelimit_reset (mastodon.Mastodon attribute), 7
report() (mastodon.Mastodon method), 55
reports() (mastodon.Mastodon method), 55, 87
retrieve_mastodon_version() (mastodon.Mastodon

method), 9, 64
revoke_access_token() (mastodon.Mastodon

method), 27, 66

S
scheduled_status() (mastodon.Mastodon method),

33, 71
scheduled_status_delete() (mastodon.Mastodon

method), 33, 72
scheduled_status_update() (mastodon.Mastodon

method), 33, 71
scheduled_statuses() (mastodon.Mastodon method),

33, 71
search() (mastodon.Mastodon method), 46, 82
search_v2() (mastodon.Mastodon method), 46, 82
set_language() (mastodon.Mastodon method), 27, 66
status() (mastodon.Mastodon method), 29, 67
status_bookmark() (mastodon.Mastodon method), 32,

71
status_card() (mastodon.Mastodon method), 29, 68
status_context() (mastodon.Mastodon method), 29,

67
status_delete() (mastodon.Mastodon method), 32, 71
status_favourite() (mastodon.Mastodon method),

31, 70
status_favourited_by() (mastodon.Mastodon

method), 29, 68
status_history() (mastodon.Mastodon method), 29,

68
status_mute() (mastodon.Mastodon method), 32, 71
status_pin() (mastodon.Mastodon method), 37, 75
status_post() (mastodon.Mastodon method), 30, 68
status_reblog() (mastodon.Mastodon method), 31, 70
status_reblogged_by() (mastodon.Mastodon

method), 29, 67
status_reply() (mastodon.Mastodon method), 31, 69
status_source() (mastodon.Mastodon method), 29, 68
status_unbookmark() (mastodon.Mastodon method),

32, 71
status_unfavourite() (mastodon.Mastodon method),

32, 70
status_unmute() (mastodon.Mastodon method), 32, 71
status_unpin() (mastodon.Mastodon method), 37, 75
status_unreblog() (mastodon.Mastodon method), 31,

70
status_update() (mastodon.Mastodon method), 32, 71
stream_hashtag() (mastodon.Mastodon method), 52,

86
stream_healthy() (mastodon.Mastodon method), 53,

86

Index 99

Mastodon.py Documentation, Release 1.8.1

stream_list() (mastodon.Mastodon method), 53, 86
stream_local() (mastodon.Mastodon method), 52, 86
stream_public() (mastodon.Mastodon method), 52, 86
stream_user() (mastodon.Mastodon method), 52, 85
StreamListener (class in mastodon), 53, 86
suggestion_delete() (mastodon.Mastodon method),

39, 76
suggestions() (mastodon.Mastodon method), 38, 76

T
timeline() (mastodon.Mastodon method), 42, 78
timeline_hashtag() (mastodon.Mastodon method),

42, 79
timeline_home() (mastodon.Mastodon method), 42, 78
timeline_list() (mastodon.Mastodon method), 43, 79
timeline_local() (mastodon.Mastodon method), 42,

79
timeline_public() (mastodon.Mastodon method), 42,

79
toot() (mastodon.Mastodon method), 31, 70
trending_links() (mastodon.Mastodon method), 46,

81
trending_statuses() (mastodon.Mastodon method),

45, 81
trending_tags() (mastodon.Mastodon method), 45, 81
trends() (mastodon.Mastodon method), 46, 82

V
verify_minimum_version() (mastodon.Mastodon

method), 9, 64

100 Index

	Usage
	Introduction
	Acknowledgements
	Research use and citing
	General information
	Rate limiting
	Pagination
	IDs and unpacking
	ID unpacking
	Snowflake IDs

	Versioning
	A brief note on block lists

	Return values
	User / account dicts
	Toot / Status dicts
	Status edit dicts
	Mention dicts
	Scheduled status / toot dicts
	Poll dicts
	Conversation dicts
	Hashtag dicts
	Hashtag usage history dicts
	Emoji dicts
	Application dicts
	Relationship dicts
	Filter dicts
	Notification dicts
	Context dicts
	List dicts
	Media dicts
	Card dicts
	Search result dicts
	Instance dicts
	Activity dicts
	Report dicts
	Push subscription dicts
	Push notification dicts
	Preference dicts
	Featured tag dicts
	Read marker dicts
	Announcement dicts
	Familiar follower dicts
	Admin account dicts
	Admin domain block dicts
	Admin measure dicts
	Admin dimension dicts
	Admin retention dicts

	Error handling
	App registration, authentication and preferences
	App registration and information
	Authentication
	User preferences

	Statuses, media and polls
	Statuses
	Reading
	Writing

	Scheduled statuses
	Reading
	Writing

	Media
	Polls
	Reading
	Writing

	Accounts, relationships and lists
	Accounts
	Reading
	Writing

	Following and followers
	Reading
	Writing

	Mutes and blocks
	Reading
	Writing

	Lists
	Reading
	Writing

	Reading data: Timelines
	Instance-wide data and search
	Instance information
	Profile directory
	Emoji

	Announcements
	Reading
	Writing

	Trends
	Search

	Notifications and filtering
	Notifications
	Reading
	Writing

	Keyword filters
	Reading
	Writing

	Push notifications
	Usage example

	Streaming
	Stream endpoints
	StreamListener
	CallbackStreamListener

	Misc: Markers, reports
	Markers
	Reading
	Writing

	Reports
	Reading
	Writing

	Utility: Pagination and Blurhash
	Pagination
	Blurhash decoding

	Administration and moderation
	Accounts
	Reports
	Trends
	Federation
	Moderation actions

	Contributing
	How to contribute
	Tests

	Every function on a huge CTRL-F-able page

	Python Module Index
	Index

